Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

See the forest and the trees!

1 minute read

Published:

Congratulations to Dave Connelly, who just submitted his first paper! It is about the use of regression forest to represent atmospheric gravity wave momentum transport to JAMES! The manuscript makes two important steps forward. First, it shows that a “boosted forest” approach, where you train each subsequent decision tree on the residual (as sketched below), can out perform a “random forest” where you combine a number of decision trees, averaging the result. This was well known in the ML community, but less so in the climate sciences. Second, Dave found that techniques from interpretable AI could be used to improve the training of a data driven parameterization. Using feature importance metrics, he found that his origional boosted forest wasn’t using enough information about latitude. By forcing the method to predict the latitude as well, he could build trees that incorporate this information more effectively!

The graft-versus-host problem…

less than 1 minute read

Published:

Ofer Shamir just submitted a paper on the use of machine learning to represent atmospheric gravity wave momentum transport to QJRMS. He developed an idealized, one-dimensional model of the Quasi-Biennial Oscillation, where we could systematically compare different data-driven methods. In particular, how can one calibrate a data-driven scheme to work in a biased model (the graft-host problem), and how well can schemes generalize to new conditions, as in a climate change scenario?

Um, what happened to me?

less than 1 minute read

Published:

I flatter myself to think you may have stopped by my webpage over the last year and half and wondered, what happened to Ed? No new papers? No research? Did he drop off the face of the Earth? Sort of. I was on sabbatical at Free University Berlin and Ludwig Maximillian University, Munich for an academic year!

What drives the impact of global warming on stratospheric ozone in the tropics?

1 minute read

Published:

Aaron Match just submitted a very elegant paper on the impact of global warming on ozone in the tropical stratosphere to GRL! Combining the classic leaky pipe model of the stratosphere with Chapman photochemistry and a simple representation of tropospheric ozone destruction, we show that the apparant upward shift of ozone in response to global warming is actually due to fortituous overlap of several different processes.

Two papers in press!

less than 1 minute read

Published:

The kitchen has been busy: two papers are now in press. First, Marianna Linz’s paper on mixing in the stratosphere was just accepted by the Journal of Geophysical Research: Atmospheres. We show how the vertical gradients in age allow us to quantify the exchange of air between the tropics and extratropics. Increased mixing leads to better baking, right? In this case, it’s very important for transporting ozone and water vapor through the stratosphere, two trace gases that impact us on the surface, protecting us from UV radiation and keeping us a bit warmer, respectively.

Transition Path Theory: A framework to explore rare events in the atmospheric circulation!

1 minute read

Published:

To conserve the number of papers in my queue, Justin Finkel submitted a new manuscript just as our MWR paper was accepted. Exploring stratospheric rare events with transition path theory and short simulations, submitted to the Journal of the Atmospheric Sciences, takes a deeper dive into the idealized Holton and Mass (1976) model of Sudden Stratospheric Warming events using Transition Path Theory, TPT for short.

Three papers in press!

1 minute read

Published:

While I was returning from summer travels, the journals went into overdrive and three papers were accepted and/or came out in press!

The SPARC Reanalysis Intercomparison Project (S-RIP) has been released!

less than 1 minute read

Published:

The SPARC Reanalysis Intercomparison Project report has been published in an early online release! This has been nearly a decade in the making – I had only one child when I first got involved – but the long effort has really paid off. I am of course partial to Chapter 6, Extratropical Stratosphere-troposphere Coupling, but the entire report is full of information about the reanalyses and the stratosphere.

Learning forecasts of rare stratospheric transitions from short simulations

2 minute read

Published:

Please see our new paper adopting a novel prediction framework from computational chemistry to forecast extreme meteorological events, just submitted to Monthly Weather Review. The paper, led by Justin Finkel, presents a proof of concept study using a stochastically forced version of the classic Holton and Mass (1976) model of Sudden Stratospheric Warming events. We establish the “committor”, which provides the ideal combination of variables for predicting SSWs (where an SSW is a transition between the two fixed points in the Holton-Mass model). We also establish a method to compute it from relatively short integrations, i.e., integrations that are short relative to the time scale of the event, and much shorter than the return time scale of events.

Virtual Presentations at EGU this April

less than 1 minute read

Published:

As my family and I cannibalize each other on our solitary descent into the abyss that is remote elementary education, intrepid collaborators will be hitting the virtual road to present at the vEGU this April! Check out these presentations:

Modeling our atmosphere with help from the machines

1 minute read

Published:

Despite tremendous advances in our understanding of the atmosphere and our capability to simulate it with numerical models on the fastest computers in the world, their remain processes that we can not accurately represent from basic physical principles. In some cases, it is an issue of computational power: we cannot resolve all relevant scales for climate prediction, from planetary scale weather systems (10^6=1,000,000’s of meters) to cloud and aerosol particles on the microscale (10^-6=0.000001 m). In other cases, we do not yet know all the relevant physics! We still need to do our best to represent these processes based on what we can simulate. Traditionally this has been done with physically motivated schemes, but there’s growing in interest in using machine learning to help. Here we take the first steps of using an artificial neural network to help parameterize atmospheric gravity waves.

Papers in print and press

less than 1 minute read

Published:

Our review article on Sudden Stratospheric Warmings, led by Mark Baldwin and Blanca Ayarzuguena, was just accepted for publication in Reviews in Geophysics. We’ve learned a great deal about “explosionartigen Stratosphärenerwärmungen” since they were first discovered by Prof. Dr. Scherhag almost 70 years ago!

Postdoctoral Positions in Machine Learning and Atmospheric Science

1 minute read

Published:

A number of postdoctoral positions are available through a project funded by NSF’s Cyberinfrastructure for Sustained Scientific Inquiry (CSSI) program. This highly collaborative project between four institutions will develop data-driven parameterizations of atmospheric gravity waves and explore their impact on climate variability and change. The project will involve novel balloon-based observations, high-resolution atmospheric model simulations, machine learning, and atmospheric modeling.

Two good papers just got better

1 minute read

Published:

I am aware that things have been rather quiet on my blog in the last months. In addition to my new found profession as an elementary school teacher (alas, not a very good one, but our efforts to get the kids transferred to another class were fruitless), we’ve been hard at work on revisions. Some very detailed and careful reviews allowed us to make two good papers even better!

Extratropical Stratosphere-Troposphere Coupling

3 minute read

Published:

Please see our chapter on extratropical stratosphere-troposphere coupling, just submitted as Chapter 6 of the SPARC Reanalysis Intercomparison Project, S-RIP. I’m quite pleased by the final (or at least, submitted) product! Kudos to Patrick Martineau, my co-lead on this 17 author effort which started over 6 years ago. Six years ago, a far away time when I only had one kid. To say that I’m very relieved to have this submitted is an understatement!

Speakers at Atmospheric Circulation in a Changing Climate

1 minute read

Published:

An updated on our workshop on the Atmospheric Circulation in a Changing Climate, 22-25 October 2019, Madrid, a joint DynVarMIP, SPARC DynVar, and SNAP meeting, hosted by Universidad Complutense Madrid, Instituto de Geociencias.

Check out our line up of invited speakers!

Imagining Simpler Worlds to Understand the Complexity of Our Own

less than 1 minute read

Published:

Just submitted to JAMES: our commentary on a nice paper by Zhihong Tan, Orli Lachmy, and Tiffany Shaw that recently appeared in the same journal. We make the case that models of simpler atmospheres – which are distinct from simple models of our atmosphere – can help us understand the circulation response of our atmosphere to global warming, and enable us to build better climate prediction models!

Now in press: model hierarchies for understanding atmospheric circulation

less than 1 minute read

Published:

Our manuscript for Reviews of Geophysics, Model hierarchies for understanding atmospheric circulation, was just accepted! Way to go Penny! In particular, I like our new figure illustrating the web of models around state-of-the-art Atmospheric General Circulation Models (AGCMs). These hierarchies of simpler models enables us to understand and improve our weather and climate prediction systems.

Why is Rome so much warmer than New York?

less than 1 minute read

Published:

While Rome and New York receive the same amount of energy from the sun (being situated at the same latitude), the former experiences a much warmer climate, particularly in the winter months. This is due to large variations in the atmospheric flow with longitude, known as “stationary waves”. It has long been known that these variations are generated by differences between land and sea, topography, and variations in sea surface temperatures. But just how do these different components add up to produce our climate?

Coast to coast speaking tours!

less than 1 minute read

Published:

The whole group is hitting the road. Check out talks in Boulder, Palo Alto, and uptown, to be helf over the next couple weeks!

What limits our ability to characterize the variability of the large scale circulation of the extratropics?

less than 1 minute read

Published:

Please see our paper Quantifying the variability of the annular modes: Reanalysis uncertainty vs. sampling uncertainty, just accepted in Atmospheric Chemistry and Physics. Patrick Martineau and I show that reanalyses have gotten quite good, and we are chiefly limited by the finite length of the observational records. In this sense, we are starved for data, not model physics!

Can we make useful forecasts beyond a couple weeks?

less than 1 minute read

Published:

Deterministic weather forecast are only possible for one to two weeks. (Or in other words, we just can’t predict whether it will be sunny or rainy 14 days from now.) But can we say something about the weather over the next few weeks, for example, will it be warmer and drier than average, even if we can’t say exactly which days will be sunny?

Why do only some Sudden Stratospheric Warmings bring stormy weather?

less than 1 minute read

Published:

Why do some Sudden Stratospheric Warmings appear to influence the troposphere, shifting the jet stream equatorward over the next 2-3 months, while others don’t? Much of the issue is tropospheric variability, which can overwhelm the influence of the stratosphere. However, our recent study, The Downward Influence of Sudden Stratospheric Warmings: Association with Tropospheric Precursors shows that there are regional patterns that can help us predict whether a Sudden Warming is more likely to have an influence on the troposphere!

group

Aman Gupta

Published:

Aman is a PhD student in my group.

Martin Jucker

Published:

Postdoctoral Research Scientist, 2014-2016.

publications

Earth Virtualization Engines (EVE)

Official Version.

Stevens, B., Adami, S., Ali, T., Anzt, H., Aslan, Z., Attinger, S., Bäck, J., Baehr, J., Bauer, P., Bernier, N., Bishop, B., Bockelmann, H., Bony, S., Bouchet, V., Brasseur, G., Bresch, D. N., Breyer, S., Brunet, G., Buttigieg, P. L., Cao, J., Castet, C., Cheng, Y., Dey Choudhury, A., Coen, D., Crewell, S., Dabholkar, A., Dai, Q., Doblas-Reyes, F., Durran, D., El Gaidi, A., Ewen, C., Exarchou, E., Eyring, V., Falkinhoff, F., Farrell, D., Forster, P. M., Frassoni, A., Frauen, C., Fuhrer, O., Gani, S., Gerber, E., Goldfarb, D., Grieger, J., Gruber, N., Hazeleger, W., Herken, R., Hewitt, C., Hoefler, T., Hsu, H.-H., Jacob, D., Jahn, A., Jakob, C., Jung, T., Kadow, C., Kang, I.-S., Kang, S., Kashinath, K., Kleinen-von Königslöw, K., Klocke, D., Kloenne, U., Klöwer, M., Kodama, C., Kollet, S., Kölling, T., Kontkanen, J., Kopp, S., Koran, M., Kulmala, M., Lappalainen, H., Latifi, F., Lawrence, B., Lee, J. Y., Lejeun, Q., Lessig, C., Li, C., Lippert, T., Luterbacher, J., Manninen, P., Marotzke, J., Matsouoka, S., Merchant, C., Messmer, P., Michel, G., Michielsen, K., Miyakawa, T., Müller, J., Munir, R., Narayanasetti, S., Ndiaye, O., Nobre, C., Oberg, A., Oki, R., Özkan-Haller, T., Palmer, T., Posey, S., Prein, A., Primus, O., Pritchard, M., Pullen, J., Putrasahan, D., Quaas, J., Raghavan, K., Ramaswamy, V., Rapp, M., Rauser, F., Reichstein, M., Revi, A., Saluja, S., Satoh, M., Schemann, V., Schemm, S., Schnadt Poberaj, C., Schulthess, T., Senior, C., Shukla, J., Singh, M., Slingo, J., Sobel, A., Solman, S., Spitzer, J., Stammer, D., Stier, P., Stocker, T., Strock, S., Su, H., Taalas, P., Taylor, J., Tegtmeier, S., Teutsch, G., Tompkins, A., Ulbrich, U., Vidale, P.-L., Wu, C.-M., Xu, H., Zaki, N., Zanna, L., Zhou, T., and Ziemen, F.: Earth Virtualization Engines (EVE), Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-376, in press, 2024.

talks

Trace Gas Transport in the Stratosphere: Opportunities and Challenges

Published:

The transport of trace gases through the stratosphere impacts surface climate. Small changes in stratospheric water vapor, on the order of one part per million, can impact surface temperature by as much as a tenth of a degree. A sudden drop in stratospheric water vapor of this magnitude – a response to internal variability of the atmosphere – was observed in 2000. Chemistry climate model simulations of stratospheric ozone also depend critically on the transport of ozone and ozone depleting substances, and biases in transport are a leading source of uncertainty in the recovery of stratospheric ozone. Volcanic aerosols (and the possibility of injecting sulfur into the stratosphere for climate intervention) provides another example of the importance of stratospheric tracer transport for the climate at the surface.

Downward migration of the zonal-mean circulation in the tropical atmosphere

Published:

The annular modes of the extratropical atmosphere have received much attention for quantifying and predicting variability of the jet streams and storm tracks, despite the limited zonal coherence of midlatitude variability. In the tropics, annular Huctuations of the circulation have not been investigated, despite the comparative dominance of zonal-mean variations in this region, associated with weak temperature gradients at low latitudes.

Downward Migration in the Zonal Mean Circulation of the Tropical Atmosphere

Published:

This is my first ever virtual colloquium visit. From the comforts of my own office, I’ll present my talk over the internet, coupled with a day of virtual meetings with students, postdocs, and faculty. The goal is to reduce our CO2 footprint – something our field should mindful of more than any other – but it will also help reduce the “family footprint”, i.e. the impact on spouses left to deal with kids who tend to get sick this time of year. Ugh. Only catch is that the seminar is 3:30 pm on a Friday, Pacific time!

Generalization and Calibration: A 1-D QBO model testbed for data-driven gravity wave parameterization

Published:

I attended this meeting virtually, actually tuning in from three different locations. In a classic, left hand doesn’t know what the right is doing, I managed to schedule our moving date to Berlin to coincide with my talk! It only worked out in the end because our sessions were in the late afternoon in Pittsburgh, so I could join our sessions at 10 pm. It started on the last day of our vacation in Tuscany, then I was in Bayreuth for the second day, as we paused on our drive across Europe, reaching Berlin for the final day of the symposium when I gave my talk!

Revealing the statistics of extreme sudden stratospheric warming events hidden in short weather forecast data

Published:

A ‘solicited’ talk at the 2023 EGU Meeting at a session on the middle atmosphere. Hmm, sounds a bit sketchy in American English, where solicited usually comes up in a legal context! I’m taking it as an opportunity to show Justin Finkel’s methods to extract climatological statistics from S2S data. This is joint work with Dorian S. Abbot and Jonathon Weare.

Revealing the statistics of extreme sudden stratospheric warming events hidden in short weather forecast data

Published:

To round out my sabbatical, an invited talk at the 2023 International Union of Geodosy and Geophysics General Assembly. Fitting that the meeting is in Berlin! As in Vienna, I’m taking it as an opportunity to show Justin Finkel’s methods to extract climatological statistics from S2S data to an audience of atmospheric scientists. This is joint work with Dorian S. Abbot and Jonathon Weare.

teaching

Dynamics of the Earth’s Atmosphere and Climate

MATH-UA 228 / ENVST-UA 360, Spring, 2019

Lectures: Monday and Wednesday, 9:30-10:45, Warren Weaver Hall 312
Laboratory: Friday, 9:30-10:45, Warren Weaver Hall 517
Office Hours: Monday and Wednesday, 11-12, Warren Weaver Hall 911

Atmospheric Dynamics

MATH-GA 3004, Spring, 2020

Lectures: Tuesday 1:25-3:15 pm, Warren Weaver Hall 512
Office Hours: Tuesday 3:30-4:30 and Wednesday 2:30-3:30, Warren Weaver Hall 911

Ordinary Differential Equations

MATH-UA 262, Fall, 2020

Lectures: Monday and Wednesday 2:00-3:15 pm, online
Office Hours: Tuesday 2:00-3:00 pm and Wednesday 8:30-9:30 pm, online

Climate Change

MATH-GA 3011, Spring, 2021

Lectures: Thusday 9:00 - 10:50 am Eastern Time (New York) on Zoom.
Office Hours: By appointment

Ordinary Differential Equations

MATH-UA 262, Fall, 2021

Lectures: Monday and Wednesday 2:00-3:15 pm, Kimmel 914
Office Hours: Monday and Tuesday 3:30-4:30 pm, Warren Weaver 911

Ordinary Differential Equations

MATH-UA 262, Spring, 2022

Lectures: Monday and Wednesday 9:30-10:45 pm, Warren Weaver 512
Office Hours: Monday 1:30-20:30 pm and Wednesday 11:00 am - 12:00 noon (Virtual)

Ordinary Differential Equations

MATH-UA 262, Fall, 2023

Lectures: Monday and Wednesday 2:00-3:15 pm, Warren Weaver 102
Office Hours: Monday and Tuesday 3:30-4:30 pm, Warren Weaver 911

Atmospheric Dynamics

MATH-GA 3004, Spring, 2024

Lectures: Tuesday and Thursday 3:30-4:45 pm, Warren Weaver Hall 517
Office Hours: Friday 10:00-12:00, Warren Weaver Hall 911