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ABSTRACT: Atmospheric regime transitions are highly impactful as drivers of extreme weather events, but pose two for-
midable modeling challenges: predicting the next event (weather forecasting) and characterizing the statistics of events of a
given severity (the risk climatology). Each event has a different duration and spatial structure, making it hard to define an
objective “average event.” We argue here that transition path theory (TPT), a stochastic process framework, is an appro-
priate tool for the task. We demonstrate TPT’s capacities on a wave–mean flow model of sudden stratospheric warmings
(SSWs) developed by Holton and Mass, which is idealized enough for transparent TPT analysis but complex enough to
demonstrate computational scalability. Whereas a recent article (Finkel et al. 2021) studied near-term SSW predictability,
the present article uses TPT to link predictability to long-term SSW frequency. This requires not only forecasting forward
in time from an initial condition, but also backward in time to assess the probability of the initial conditions themselves.
TPT enables one to condition the dynamics on the regime transition occurring, and thus visualize its physical drivers with a
vector field called the reactive current. The reactive current shows that before an SSW, dissipation and stochastic forcing
drive a slow decay of vortex strength at lower altitudes. The response of upper-level winds is late and sudden, occurring
only after the transition is almost complete from a probabilistic point of view. This case study demonstrates that TPT quan-
tities, visualized in a space of physically meaningful variables, can help one understand the dynamics of regime transitions.

KEYWORDS: Atmosphere; Risk assessment; Probability forecasts/models/distribution; Stochastic models;
Subseasonal variability; Clustering

1. Introduction

Many features of the atmosphere–ocean system’s large-scale
variability can be viewed as transitions between qualitatively dif-
ferent regimes. Examples include blocking, monsoons, El Niño,
and sudden stratospheric warming (SSW) events (the subject of
this paper), all of which are associated with extreme weather.
From a scientific perspective, regime transitions are handles by
which to probe the climate’s nonlinear, nonequilibrium dynam-
ics. They expose novel physics and push us to qualitatively ex-
pand our physical understanding. From a human perspective,
these relatively rare anomalies pose major societal challenges
(Lesk et al. 2016; Kron et al. 2019), especially with a changing cli-
mate and increasing reliance on weather-susceptible infrastruc-
ture (e.g.,Mann et al. 2017; Frame et al. 2020).

Regime transitions are used as benchmarks for model devel-
opment across a hierarchy, from state-of-the-art Earth system
models with billions of variables (e.g., Stephenson et al. 2008;
Lengaigne and Vecchi 2010; Vitart and Robertson 2018) to con-
ceptual low-order models with fewer than 10 variables (e.g.,
Charney andDeVore 1979; Timmermann et al. 2003; Ruzmaikin

et al. 2003; Crommelin et al. 2004; Thual et al. 2016). In Finkel
et al. (2021), we addressed near-term forecasting of regime tran-
sitions in the context of an idealized SSW model constructed by
Holton and Mass (1976), which possesses two metastable states:
a strong-vortex regime and a weak-vortex regime. The present
paper’s chief goal is to address questions about the long-term cli-
mate statistics of rare events by way of a case study on SSW-like
regime transitions in the Holton–Mass model: How often do
they occur, what are their typical development pathways, and
how variable are those pathways between events?

We will use the framework of transition path theory (TPT;
E andVanden-Eijnden 2006), which offers a concise set of quanti-
ties to answer these questions. An SSW event is represented as a
transition path from the strong vortex regime, which we denote
stateA, to the weak vortex regime, state B. The main quantity of
interest will be the reactive current JAB, defined in section 3, which
specifies the flow of probability density through state space condi-
tioned on an A" B transition event being underway. To properly
implement that conditional statement, we will need two auxiliary
quantities. First, the forward committor q1B (x) gives the probabil-
ity that the system, initialized in a state x, next reachesB beforeA.
This is ameasure of progress toward SSW:What is the probability
of observing an SSW before returning to the strong vortex cli-
matology? Second, the backward committor q2A(x) gives the
probability, looking backward in time, that the system visited
Amore recently thanB, i.e., the model was last in the metasta-
ble strong vortex climatology, as opposed to just recovering
from a recent SSW.
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The forward committor itself was a primary focus of Finkel
et al. (2021), where we pursued forecasting as themain objective.
Committor probabilities are generally gaining traction as a met-
ric for weather prediction; see Tantet et al. (2015) for an applica-
tion to atmospheric blocking, Lee et al. (2018) for an application
to tropical cyclone downscaling, Lucente et al. (2022) for an ap-
plication to El Niño, and Miloshevich et al. (2022) for an ap-
plication to heat waves. However, in the present paper we
are pursuing climatological statistics rather than forecasting prob-
abilities, using the committor only as an intermediate calculation
for the reactive current, which characterizes the full transition
process fromA toB rather than its “forward half” from x toB.

Some previous studies (Crommelin 2003; Tantet et al. 2015)
have visualized what are essentially reactive currents for blocking
events in an observable subspace of leading EOFs. However,
these studies were not couched in the language of TPT, a formal-
ism that bringsmorequantitative results. Namely, the reactive cur-
rent JAB provides a direct estimate of the SSW rate, decomposing
it over a continuous probability distribution of pathways. Formal
TPT has not yet been widely taken up by the atmosphere–ocean
science community, besides a few exceptions (Finkel et al. 2020;
Miron et al. 2021, 2022). Part of our goal here is to encourage a
common quantitative language for discussing regime transitions,
which could help to organize several existing lines of research.

The reactive current JAB, like q1B , can be expressed as a func-
tion of any observable subspace for visual exploration, with the
complementary subspace treated as random variables. It is most
enlightening to use observables with concrete physical meaning.
A recent article (Miloshevich et al. 2022) exploited this property
to interpret a neural-network-learned committor for heat waves
in terms of geopotential height and soil moisture, thus quantify-
ing their predictive power at various lead times. In Finkel et al.
(2021), we visualized the committor and expected lead time in a
two-dimensional subspace consisting of zonal wind U, an index
for polar vortex strength, and vertically integrated heat flux
(IHF), which roughly measures the amplitude and phase tilt of
vortex-disrupting planetary waves. Here we continue to use
those coordinates, but also introduce a new subspace based on
the zonal-mean meridional potential vorticity (PV) gradient and
eddy enstrophy. These two quantities obey a conservation law in
the absence of dissipation and stochastic forcing, a slight varia-
tion of the Eliassen–Palm relation. This allows us to diagnose
more precisely the crucial roles of dissipation and stochastic forc-
ing in driving the transition process, an important step toward
understanding their causal relationship. Other kinds of atmo-
spheric regime transitionswill have different relevant physical di-
agnostics, any of which can be seen as an independent variable
for the committor function and reactive current.

This paper is organized as follows. In section 2we review the dy-
namical model. In section 3 we visualize the evolution of SSW
events using the probability current, and introduce the key quanti-
ties for TPT}committors, densities, and currents}along with a
brief summaryof themethod to compute them,which ismore thor-
oughly explained in the online supplementary document. In section 4,
we use reactive current to construct a composite SSW evolution,
and compare this to the standard composite method. In section 5,
we change coordinates to better examine the dynamics of SSW
events.We assess future directions and conclude in section 6.

2. A stochastically forced Holton–Mass model of
SSW dynamics

We use exactly the same model as in Finkel et al. (2021),
which is presented here for completeness.

a. Model specification

Holton and Mass (1976) developed a minimal model for the
variability of the winter stratospheric polar vortex, capturing the
wave–mean flow interactions behind sudden stratospheric warm-
ing events. The model’s prognostic variables consist of a zonally
averaged zonal wind u(y,z, t) and a perturbation geostrophic
streamfunction c ′(x, y, z, t) on a b-plane channel with a central
latitude of u 5 608N, a meridional extent of 608, and a height of
70 km, with the coordinate z ranging from 0 at the bottom of the
domain (the tropopause) to 70 km at the top of the domain. u and
c ′ are projected onto a single zonal wavenumber k 5 2/(acosu)
and ameridional wavenumber ‘5 3/a:

u(y, z, t) 5 U(z, t)sin(‘y), (1)

c ′(x, y, z, t) 5 Re{C(z, t)eikx}ez/2Hsin(‘y), (2)

where a 5 6370 km is the radius of Earth, and H 5 7 km is
the scale height. U (the mean flow) and C (a complex-valued
wave amplitude) evolve according to the projected primitive
equations and the linearized quasigeostrophic potential vor-
ticity (QGPV) equation. A nondimensionalized version of the
equations is as follows, rearranged slightly from Finkel et al.
(2021). The mean flow U(z, t) satisfies

2

(«‘)2 t[G
2b 1 «(G2‘2U 1 Uz 2 Uzz)]

5
2

«‘2
ezz[e2zaz(U 2 UR)]

1 kezIm(C*Czz) (3a)

with boundary conditions

U(z 5 0) 5 UR(z 5 0) 5 10m s21

Uz(z 5 ztop) 5 UR
z (z 5 ztop) 5 g/1000

,

while the perturbation streamfunction amplitudeC(z, t) satisfies

(t 1 ik«U) 2G2(k2 1 ‘2) 2 1
4
1 2z

[ ]
C

1 ikC[G2b 1 «(G2‘2U 1 Uz 2 Uzz)]

5 2 z 2
1
2

( )
a z 1

1
2

( )
C

[ ]
(3b)

with boundary conditions

C(z 5 0) 5 gh
f0

C(z 5 ztop) 5 0:

We have defined the nondimensional parameter G2 :5

H2N2/(f 20L2), where f0 is the Coriolis parameter at 608N,
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N2 5 4 3 1024 is the stratification, and L 5 2.5 3 105 km is a
horizontal length scale chosen to make nondimensionalized U
andC variables have similar climatological variances. The lin-
ear relaxation toward UR(z) 5 10 m s21 1 (g/1000)z on the
right-hand side of Eq. (3a) is the force that maintains the typi-
cally strong polar vortex. Here g 5 1.5 m s21 km21. The relax-
ation is mediated by a Newtonian cooling profile a(z), which
is plotted in Fig. 1a, in its original dimensional units. Mean-
while, the lower boundary condition on C comes from a bot-
tom topography hcos(kx), where h 5 38.5 m. This serves as a
source of planetary waves.

There are two differences from Finkel et al. (2021), besides
rearrangement. First, Finkel et al. (2021) had an erroneous but
inconsequential negative sign in front of UR

zz [their Eq. (3)]
which is corrected in Eq. (3a). Second, the left side of Eq. (3b)
has two terms,6ik«G2‘2UC, which could be cancelled out; we
have retained them both to maintain a term-by-term corre-
spondence with the original QGPV equation,

(t 1 ux)q′ 1 y ′yq 5 sources 2 sinks, (4)

where q′ 5 =2c′ 1
f 20
N2 e

z/Hz(e2z/Hc′), (5)

and y ′ 5 xc
′, (6)

which will be important when deriving the enstrophy budget
in section 5.

After discretizing to 27 vertical levels, we end up with a
state space of dimension d 5 3 3 (27 2 2) 5 75, with a state
vector

X(t) 5 [Re{C(t)}, Im{C(t)},U(t)] 2 R
75, (7)

each of the three entries representing a vector with 25 discrete
altitudes. We thus obtain a system of 75 ODEs, X(t)5 v[X(t)].

We furthermore perturb the system by stochastic forcing to
represent unresolved processes such as smaller-scale Rossby
and gravity waves, initial condition uncertainties, and sour-
ces of model error, an approach originally put forward by
Birner and Williams (2008) and used more recently by Esler
and Mester (2019). The forcing is white in time, giving an
Itô diffusion

dX(t) 5 v[X(t)]dt 1 s[X(t)]dW(t), (8)

where v(x) (not to be confused with meridional wind velocity y)
is the drift function determined by Eq. (3), W(t) is an (m 1 1)-
dimensional white-noise process, and s 2 R

d3(m11) is a matrix
specifying the spatially smooth structure of the noise as Fou-
rier modes in the vertical; s could depend on the state vector
X, but for simplicity we fix it to a constant, defined as follows.
At each time step dt 5 0.005 days, after incrementing the full
system by dX 5 v(X)dt, we additionally increment the zonal
wind profile by

dU(z) 5 sU ∑
m

k50
hk sin k 1

1
2

( )
p

z
ztop

[ ] ���
dt

√
, (9)

where sU 5 1 m s21 day21/2, whose units reflect the quadratic
variation of Brownian motion. The numerical scheme is
known as Euler–Maruyama (see, e.g., Pavliotis 2014, chapter 5).
Equation (9) fully defines the matrix s. For k 5 0, … , m, the
kth column starts with 50 zeros, since there is no forcing on
Re{C} or Im{C}. The last 25 entries are evenly spaced samples
of the sinusoidal factor in Eq. (9), all times sU.

The specific choice of stochastic forcing does affect the
transition path statistics, but our method can be applied to
any stochastic forcing. Because of the nonlinear coupling be-
tween U(z) and C(z) in Eqs. (3a) and (3b), the noise injected
to U feeds toC after a single time step.

FIG. 1. Parameters and stable equilibria of the Holton–Mass model. (a) The Newtonian cooling profile a(z). (b) Zonal-mean zonal wind
U(z). (c) Perturbation streamfunction c ′(x, 608N, z), with contour spacing of 1.5 3 107 m2 s21. Dashed lines mean negative values. Blue
indicates the strong vortex equilibrium a, and red indicates the weak vortex equilibrium b, as in Eq. (12).
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b. Diagnostics

Until section 5, we use two main diagnostics for visualiza-
tion, the same as in Finkel et al. (2021). The first is zonal wind
strengthU(z), an index for vortex strength which is used to de-
fine regimes A and B. The second is the meridional eddy heat
flux y ′T′ (z), which quantifies the heat being advected into the
polar region associated with the sudden warming, and in the
quasigeostrophic limit, the vertical propagation of Rossby
waves. In theHolton–Mass model, this takes the form

y ′T′ (z) 5 Hf0
R

c′

x
c′

z
~ ez/H |C(z)|2 u

z
, (10)

where R is the ideal gas constant for dry air and u is the phase
of the complex-valued streamfunction C. Hence the heat flux
is related to the amplitude and phase tilt of the waves, both of
which rise significantly during an SSW event. We also use the
density-weighted vertical integral of heat flux,

IHF(z) :5
	z

0
e2z/Hy ′T′ (z′)dz′, (11)

which varies more smoothly than y ′T′ at any single altitude.

c. Bistability

We use the same constant parameters and boundary condi-
tions as Finkel et al. (2021), which give rise to two stable equi-
libria: a radiative equilibrium–like state, denoted a, and a
disturbed state b, in which upward-propagating stationary
waves flux momentum down to the lower boundary, weaken-
ing zonal winds. Detailed bifurcation analysis by Yoden
(1987a) and Christiansen (2000) found a range of values for
bottom topography h that create bistability. Figures 1b and 1c
depicts the zonal wind and streamfunction of these two equilib-
ria. SSW events in this model are abrupt transitions from the
region near a to the region near b. If a strong wave from below
happens to catch the stratospheric vortex in a vulnerable con-
figuration, then a burst of wave activity can propagate upward,
ripping apart the polar vortex and causing zonal wind to col-
lapse (Charney and Drazin 1961; Yoden 1987b). With certain
parameters, the vortex can get stuck in repeated “vacillation
cycles,” in which the vortex begins to restore with the help of
radiative forcing, only to be undermined quickly by the wave.
The situation of two well-separated equilibria is highly ideal-
ized, and not a generic feature of climate phenomena; this sys-
tem, with these parameters, serves to demonstrate qualitative
features of SSW, not represent the real stratosphere quantita-
tively. Holton and Mass (1976), Yoden (1987b), Christiansen
(2000), and Finkel et al. (2021) contain further details.

A transition path is defined as an unbroken segment, or trajec-
tory, of the system that begins in a region A of state space (a
neighborhood of a) and travels to another region B (a neighbor-
hood of b) without returning to A. As in Finkel et al. (2021), we
defineA andB based on the zonal-mean zonal wind at z5 30 km:

A 5 {x 2 R
d : U(30 km)(x)$ 53:8m s21}, (12a)

B 5 {x 2 R
d : U(30 km)(x)# 1:75m s21}, (12b)

where the velocity thresholds correspond to the vortex strength
at 30 km for the fixed points a and b, respectively.

An SSW event is then a transition from A to B, while the re-
verse, from B to A, represents the recovery of the vortex. The
definition of B modifies the widely used definition of Charlton
and Polvani (2007) in twoways. First, we use zonal wind at 30 km
above the tropopause (in log-pressure coordinates), because
30 km is where the zonal wind profile of b reaches a minimum;
Christiansen (2000) used this same coordinate when studying the
same model. [The standard 10 hPa pressure level would corre-
spond to z527 km3 log(10/1000)2 10 km’ 22 km above the
troposphere in this model.] We also modify the zonal wind
thresholds order to ensure that a2A and b2B.

An important consequence of our A and B definitions is
that the A" B transition path takes;80 days. By design, this
includes the slow initial preconditioning stage of vortex break-
down in advance of the ;10-day time horizon that tradition-
ally comprises an SSW event. In this paper, “SSW event”
should be interpreted as both the preconditioning and the en-
suing vortex collapse.

Figure 2 shows time series ofU and y ′T′ at several different al-
titudes as the system goes through several transition paths in a
long simulation. As in Fig. 2 of Finkel et al. (2021), orange strips
denoteA" B transitions while green strips denote B"A tran-
sitions. The long periods in between, which we call the A " A
andB"B phases, demonstrate the bistable nature of regimesA
and B. The fleeting A " B phase, however, is what we seek to
understand.When the system is en route fromA toB, we say it is
(AB) reactive, using a term from chemistry literature where the
passage from A (reactant) to B (product) models a chemical re-
action. The following section will introduce the reactive density
pAB(x) and associated reactive current JAB(x), which help us vi-
sualize the transition as a path distribution through state space
andmake the foregoing observationsmore quantitative.

3. The reactive density and reactive current:
A distribution over transition paths

We consider the long-time behavior of our stochastic
Holton–Mass model X(t) undergoing transitions between
states A and B. Aggregating together statistics from only the
transition paths yields a probability distribution called the re-
active density pAB(x), defined such that

pAB(x)dx 5 P{X(t) 2 dx|X(t) is in transition from A to B},
(13)

where dx is a small region about x. One could estimate pAB

by binning samples from a long simulation, but including only
those samples in transit directly from A to B. Associated to
pAB is a vector field called the reactive current JAB(x), which
quantifies the probability flux passing through x per unit time
only during transition paths. Roughly speaking, pAB specifies
where transition paths go, and JAB specifies how they move.
Below we define them formally, but Figs. 3a–c give some intu-
ition by projecting them on the subspace (U, IHF) at z 510,
20, and 30 km. Background shading indicates the strength of
pAB, and arrows indicate the magnitude and direction of JAB.
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Overlaid in thin blue lines are 10 randomly sampled transition
paths from the long ergodic simulation. These sample paths
cluster in the same regions of state space identified as high
probability under pAB, and on average flow along the arrows,
corroborating qualitatively that pAB(x) and JAB describe the
location and evolution of the model in state space.

The transition path ensemble shows marked differences be-
tween altitudes. At z510 km, the vortex strength (U) of states
a and b is about the same, but the IHF is very distinct. The reac-
tive current aligns with the IHF axis. Mathematically, this re-
flects the lower boundary condition U(z 5 0) 5 UR(z 5 0).
Physically, this means that the heat flux due to the wave is the
dominant physical process, with only small changes in zonal
wind strength. The higher altitude of z 5 30 km, by contrast,
exhibits a large reduction in zonal wind strength, but only in
the late stages of the process. In fact, the pattern of reactive
densitypAB at z5 30 km (Fig. 3c) tells us that this final deceler-
ation is quite sudden: the magnitude of pAB is large near A,
meaning transition paths linger there for a long time and only
slowly crawl downward and to the right. But at the point
IHF(30 km)’ 2.53 104 Km s21,U(30 km)’ 30m s21 (the re-
gion marked by a black rectangle in Figs. 3c,f), pAB reduces in
magnitude and the reactive current spreads out widely as it
turns downward toward set B. This is a signal that the transi-
tion paths are becoming both faster andmore variable.

As a further point of comparison with JAB, we have plotted
theminimum-action pathway fromA toBwith thick cyan lines
(section 3 of the supplement specifies the numerical method).
This represents the most likely transition path in the low-noise
limit (e.g., Freidlin andWentzell 1970; E et al. 2004; Forgoston

and Moore 2018), and indeed it follows the direction of reac-
tive current. With finite noise, however, the transition path
ensemble spreads significantly around the minimum-action
pathway, especially at the higher altitude of 30 km in the late
stage of the transition process. Because of this, it is not possible
for any single pathway, minimum action or not, to meaning-
fully represent the full ensemble.

We will show that the slow, initial phase of SSW involves
preconditioning of the vortex: gradual erosion of the wind
field by the stochastic forcing into a configuration that is espe-
cially susceptible to wave propagation. Once the wave burst is
triggered, it imparts swift changes to the entire zonal wind
profile. However, the bulk of SSW progress, probabilistically
speaking, occurs in the preconditioning phase. Below we
make this qualitative description precise by relating the reac-
tive current to the forecast functions from Finkel et al. (2021):
the committor and expected lead time metrics.

a. Mathematical relationship between current, committor,
density, and rate

To formalize the description above and interpret the cur-
rent rigorously, some definitions are in order, including a
brief recap of the quantities from Finkel et al. (2021). Let
us fix an initial condition X(t0) 5 x with a vortex that is
neither strong nor fully broken down, so x �2 A < B. X(t)
will soon evolve into either A or B, since both are attrac-
tive. The probability of hitting B first is called the forward
committor (to B):

q1B (x) 5 Px{X[t1A<B(t0)] 2 B}, (14)

FIG. 2. Regime transitions. We plot (a) the zonal-wind strength U and (b) the eddy heat flux
y ′T′ , both over the first 3000 days of a long stochastic simulation. The quantities are evaluated
at z 5 10, 20, and 30 km. The time interval contains two transitions from A (a strong vortex) to
B (a weak vortex) and back. A " B transitions are highlighted in orange, and B " A transitions
are highlighted in green.
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where the subscript x denotes a conditional probability given
X(t0) 5 x, and t1S (t0) is the first hitting time after t0 to a set
S ⊂ R

d:

t1S (t0) 5 min{t . t0 : X(t) 2 S}: (15)

Like the expected lead time introduced below, the committor (un-
der various aliases) predates TPT as an object of interest in the
study of rare events (Du et al. 1998; Bolhuis et al. 2002). However,
as wewill see below, it is a key ingredient in anyTPTanalysis.

Our system is autonomous, with no external time-dependent
forcing, so we can set t0 5 0 and drop the argument from t1A<B

without loss of generality. The autonomous assumption can be
relaxed, either by augmenting x with a periodic variable for
time (e.g., to include the seasonal cycle) or by augmenting A
andB to include initial and terminal times (e.g., to better exam-
ine climate change effects). Periodic- and finite-time TPT has
been presented formally in Helfmann et al. (2020), and we
have applied it to a dataset of state-of-the-art ensemble fore-
casts in Finkel et al. (2022). As a conceptual demonstration,
however, the autonomous Holton–Mass model makes for a
clearer exposition.

While t1A<B itself is a random variable, one can take its ex-
pectation to obtain the expected lead time (to B),

h1
B (x) :5 Ex[t1A<B|t1B , t1A], (16)

in other words, the expected time of arrival to B conditional
on hitting B first. Finkel et al. (2021) described q1B and h1

B in
detail, as they are central quantities for forecasting, and visu-
alized them in their Figs. 2c, 2d, and 3c in the observable sub-
space (U, IHF). We do the same here, but additionally we
overlay the reactive current. In Figs. 3d–f, background shad-
ing represents the expected lead time and black contours rep-
resent committor level sets of 0.1, 0.2, 0.5, 0.8, and 0.9.

The committor’s contour structure differs a lot between al-
titude levels. At 10 and 30 km (Figs. 3d,f), the contours have
kinks. Depending on the initial condition, either a fluctuation
in U or IHF might have a greater effect on the committor.
The intermediate altitude of 10 km seems special in having
committor contours that align with the IHF axis along the
main channel of reactive current. In other words, q1B (x) is
well-approximated by a linear function of U(20 km), which is

FIG. 3. Currents, densities, committors, and expected lead times. (a) Background shading is the reactive density pAB on a log scale. Thin
blue lines are 10 randomly selected transition paths from the long control simulation. The thick cyan curve is the minimum-action path
from A to B. Also overlaid is a vector field representing reactive current JAB. The subspace is (U, IHF) evaluated at z 5 10 km. Positions
of the fixed points a and b are marked. Arrows represent JAB. (b),(c) As in (a), but at z 5 20 and 30 km, respectively. (d) The expected
lead time h1

B is shaded as background color, and level sets of the committor q1B 5 0:1, 0:2, 0:5, 0:8, and 0:9 are overlaid as black curves.
(e),(f) As in (d), but at z 5 20 and 30 km, respectively. A box marks a transition region between narrow, constrained current and wide,
dispersed current. See text for a description.
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consistent with the finding in Finkel et al. (2021) that the
21.5-km altitude holds the most predictive power for q1B .

JAB is related to q1B , generally flowing up the committor
gradient. But JAB contains some key information that the
committor does not. As a forecast function, the committor
does not distinguish A " B transitions from B " B transi-
tions, where the system leaves state B (beginning to recover),
but then falls back to the weak-vortex state. To isolate the
transition events from A to B, we need to introduce the back-
ward committor (to A):

q2A(x) 5 Px{X[t2A<B(t0)] 2 A}, (17)

where t2S (t0) is themost recent hitting time:

t2S (t0) 5 max{t , t0 : X(t) 2 S}: (18)

Intuitively, q2A(x) is the probability of the system at point x
last came from A, not B. The backward-in-time probabilities
refer specifically to the process X(t) in steady-state, allowing
us once again to set t0 5 0. In other words, q2A(x) depends ex-
plicitly on the steady-state probability density p(x), where
p(x)dx5 P{X(t) 2 dx} is the long-term (climatological) prob-
ability of finding the system in a small region dx about x.

Having defined both forward and backward committors, we
can express the reactive density as

pAB(x) 5
1

ZAB

p(x)q2A(x)q1B (x), (19)

where ZAB is a normalizing constant such that the right-hand
side integrates to one. The associated reactive current can in
turn be expressed

JAB(x) 5 q2Aq
1
B [pv 2 = · (Dp)] (20)

1 pD[q2A=q1B 2 q1B=q
2
A], (21)

where the diffusion matrix D(x)5 (1/2)s(x)s(x)T, and = rep-
resents the gradient operator over state space.

Equation (21) is a specific expression for the current of a dif-
fusion process of the form (8), which is the same general for-
mulation as our model. But a more illuminating and general
definition is its connection to the rate, or inverse return time, of
the event [approximately (1700 days)21 for the Holton–Mass
model with our chosen parameters]. Let C be a closed hyper-
surface in R

d which encloses A and is disjoint with B; we call
this a dividing surface. In the context of the diagrams in Fig. 3,
C is any curve separating region A from region B. Then we
have 


C
JAB · ndS 5 Transition rate, (22)

where n is an outward unit normal fromC and dS is a surface area
element. The integral relationship (22) holds for any dividing sur-
face, implying that the current is divergence-free outside ofA and
B, but has a source in A and a sink in B [see Vanden-Eijnden
(2006) for a thorough mathematical explanation of JAB]. This

constraint immediately implies a link between magnitude and
width of JAB streamlines. In Figs. 3c and 3f, the strong magnitude
of JAB near a implies a thin central channel, and strict constraints
on the mechanisms of early SSW onset. In other words, the initial
preconditioning phase can only happen in a small number of
ways. On the other hand, the subsequent weakening of JAB be-
tween q1B 5 0:5 and q1B 5 0:8 (in the boxed region of Figs. 3c,f)
implies that paths fan out across state space, becoming more vari-
able. This spreading, or diversity of events, is only with respect to
U and IHF at 30 km; at the lower altitudes, the current remains
strong and narrow all the way through the transition process
(Fig. 3, columns 1 and 2).

The reactive current and density characterize the transition
path ensemble across the continuum of possible pathways, pro-
viding more information than the numerical value of the rate
itself. Given any user-defined set of coordinates, the reactive
current projection maps the transition paths in those coordi-
nates, as a statistical ensemble with average behavior and vari-
ability. Below, following a brief note on the computational
method, sections 4 and 5 demonstrate how to use reactive cur-
rent and density to describe climatology and strengthen physi-
cal understanding of a rare transition event.

b. Computational method

The quantities presented in section 3, as well as the results to
follow, could be computed directly by running amodel for long
enough to undergo a large number of SSW events and analyz-
ing the statistics of those transitions. This procedure, which we
call the “ergodic simulation” (ES) method, is possible in the
75-dimensional Holton–Mass model, and we have performed
such a simulation of 106 days for validation purposes. How-
ever, this can be a major computational barrier in global
climate models when the numerical integration is costly and
the return period is long compared to the simulation time step.
Anticipating the need for fundamentally different techniques
in high-dimensional state spaces, we have instead used the dy-
namical Galerkin approximation (DGA; Thiede et al. 2019;
Strahan et al. 2021). A large collection of trajectories are
launched in parallel with initial conditions distributed across
state space, each one running for only a short time relative to
the return period. Here we use 3 3 105 trajectories of length
20 days each, which is shorter than the 80-day duration of a sin-
gle SSW event and much shorter than the 1700-day return pe-
riod. Afterward, we assemble all these pieces together to
estimate the quantities of interest, exploiting theMarkov prop-
erty. The total simulation time is not always reduced by this
method}in our case, the short simulations total 6 3 106 days
compared with the 1 3 106-day ES}but the format opens the
door for many interesting possibilities, such as massive paralle-
lization and adaptive sampling. In particular, as we show in
Finkel et al. (2022), DGA is uniquely positioned to exploit
large ensembles of short weather forecasts from high-fidelity
operational models.

The basic DGA algorithm for rare event analysis has been
described and tested in a recent series of articles (Thiede et al.
2019; Strahan et al. 2021; Finkel et al. 2021; Antoszewski et al.
2021). It is closely related to the “analog Markov chain”
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approach of Lucente et al. (2021). Recently, an approach to
learning neural network approximations of forecast func-
tions using short trajectory data was introduced in Strahan
et al. (2022). Due to the dependence on steady state and
backward-in-time quantities, a full TPT analysis as carried
out in this paper requires additional calculations beyond
what is described in Finkel et al. (2021). We leave these de-
tails to the supplement in order to keep the focus on the re-
sults of our TPT analysis, which are robust with respect to
algorithmic parameters.

4. SSW composites

Here we explain the traditional notion of a rare event
“composite” and contrast it with the composite intrinsically
defined by TPT. The results are qualitatively similar, but the
TPT description allows a rigorous mathematical connection
to the reactive current and SSW rate.

The standard “composite” of an SSW event is a day-by-day
aggregate of all the SSW events in a given dataset, aligned
by the central warming date. This can include statistics, such
as the mean and quantiles, of any observable function, such as
the zonal-mean zonal wind or heat flux. Charlton and Polvani
(2007) and Charlton et al. (2007) used this method to describe
SSW climatology and establish benchmarks for stratosphere-
resolving GCMs. We form a standard composite of U(30 km)
from our Holton–Mass model in Fig. 4a, averaging together
300 events from a long ergodic simulation.

Here, we propose a complementary “TPT composite”
based on reactive density. Instead of aligning events by the
central warming date, we align the events by a general coordi-
nate f(x), which can be user-defined but must fulfill the mini-
mal criterion of increasing from A to B, so it represents some
objective notion of progress. At any progress level f0, the TPT
composite is defined by restricting the reactive density pAB(x)
to the level set {x: f(x) 5 f0}. Fixing f 5 f0 is not the same as
fixing the lead time t1B , because the threshold might be
crossed at different times by different transition paths. Note
that f(x) is a deterministic function of initial condition x, un-
like the hitting time t1B , which is a random variable that
changes between realizations launched from the same initial
condition. Therefore, t1B cannot itself be used as a progress
coordinate.

In Figs. 4b and 4c, we juxtapose alternative composites with
the standard warming date coordinate 2t1B . In Fig. 4b, we ag-
gregate paths based on the negative expected lead time 2h1

B

defined above: the expected time until the central warming
date. 2h1

B is the deterministic progress function that is closest
(in the mean-square sense) to the random progress function
t2 t1B defining traditional composites. Figure 4c uses an alto-
gether different progress metric, the committor q1B itself,
which increases from 0 on A to 1 on B.

The traditional and TPT composites are similar in shape,
with an initially gradual decay in U(30 km) accelerating into a
rapid decline in the final few days. As a function of 2h1

B ,
U(30 km) accelerates steadily through the whole transition, in
both the traditional and TPT composites. But as a function of
committor, U(30 km) decreases linearly at first and then

FIG. 4. Composites evolution of SSW events. Orange curves plot the
mean value of U(30 km) at a given stage in the transition process; ex-
panding gray envelopes show themiddle 25th-, 50th-, and 90th-percentile
ranges. We use three different notions of progress: (a) hitting time to
B (t2 t1B ), (b) expected hitting time to B (2h1

B ), and (c) committor
(q1B ).
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accelerates downward between q1B 5 0:6 and q1B 5 0:7. Ac-
cording to the standard composite,U(30 km) becomes steadily
less variable over time, with the whole ensemble collapsing
into a single path by construction, as t 5 0 is the time of the
event when U(30 km) 5 0. But when viewed as a function of
expected lead time or committor,U(30 km) becomesmore var-
iable in the middle of the path, starting at h1

B ’ 50days or
q1B ’ 0:65 and lasting until the end, when h1

B " 0 and q1" 1.
The same variability is reflected in Figs. 3c and 3f. In the

boxed region, the reactive density weakens and the reactive
current spreads out, some paths turning straight downward
into B and others accumulating still more heat flux before
making the plunge. The q1B and h1

B contours in Fig. 3f convey
geometrically how it is possible to have such wide variation in
zonal wind strength even at a fixed expected lead time. Along
the central channel of strong reactive current, where most of
the transition paths flow, the committor and expected lead
time have an approximately (negative) linear relationship.
But in the weak-U flank of the current, especially in the boxed
region, the q1B level sets “unkink” to align with the IHF axis
while the h1

B level sets turn downward to align with the U
axis. The lowest visible level set of h1

B thus spans a range of
vortex strengths of U(30 km).

Physically, the TPT composites are more variable than the tra-
ditional composite because 2h1

B , the expected lead time}a de-
terministic function}is a coarser description than t2 t1B , a
random variable. The former is an average over all realizations,
while the latter takes on a specific value for each realization,which
is not actually known until after the warming occurs. Given only
information on the resolved variablesC(z, t) andU(z, t) at a given
time, the TPT composite is the best one can do. The expected
lead time quantifies SSW predictability, as established in Finkel
et al. (2021). Here, we additionally incorporate the backward
committor q2A via the reactive densitypAB, and so restrict focus to
transition events}“majorwarmings”}fromA toB.

As a loose analogy, a student’s progress toward a degree
can be measured objectively in course credits. On the other
hand, first-year exams might weed out half of all students,
which means that the probabilistic halfway point usually
comes before half of required credits are done. A third metric,
the time until graduation, can vary due to random effects like
gap years and pandemics, which can cause a student to space
their course load unevenly in time. Each cross section of the
student population}conditioning on a fixed number of cred-
its completed, probability of graduation, or expected time un-
til graduation}is a different statistical ensemble, each one
conveying different information.

Going forward, we will use the committor as the progress co-
ordinate of choice. That way, each point along the composite is
an average over trajectories that are equally predictable in their
probability to reach B, i.e., to proceed to an SSW. Often it is not
just a singular coin toss that determines the fate of X(t), but a
whole sequence of “coin tosses”}random turns through state
space}aligning in just such a way to navigate fromA toB. With
the committor as a progress coordinate, the “coin tosses” are
equidistributed along the horizontal axis, though they may not
be equidistributed in time.

The same composite technique can be used to visualize the
vertical wind structure at different stages. Figure 5 plots U(z)
and y ′T′ (z) as altitude-indexed probability distributions at a se-
ries of committor level sets: q1B 5 0:1, 0:5, and 0:9. Thewidening
variability with increasing committor is faintly visible at low al-
titudes, but increases dramatically above;23 km, where at the
q1B 5 0:9 level, the mean state (orange curve) falls well below
the median state (central gray envelope). This means the distri-
bution of transition states is skewed left by a minority of paths
with early collapse of upper-level winds. At the same commit-
tor range of 0.5–0.9, the vertical profile of meridional heat flux
inflates dramatically. The altitude range of z5 20–25 km is the
key transition region, belowwhich zonal wind evolves relatively
smoothly and with a symmetric distribution, and above which it
varies rapidly with a skewed distribution. y ′T′ (z) is maximum
near this altitude. We speculate that the underlying reason is
the Newtonian cooling profile a(z), which has its own transition
region centered at 25 km. It is not surprising that zonal wind
just below, at 21.5 km, is an optimal linear predictor, as we
found in Finkel et al. (2021).

5. A wave–mean flow interaction perspective

The previous section presented JAB and pAB as functions of
two basic observables, zonal wind and integrated heat flux, and
constructed a composite evolution of these observables. In this
section, we incorporate more detailed physical knowledge to im-
prove the interpretability of our TPT results. In particular, we
manipulate the dynamical equations to derive an enstrophy bud-
get in the Holton–Mass model, which reveals a more natural set
of coordinates that separates conservative from nonconservative
processes. By visualizing the current in these coordinates, we
identify physical drivers of each stage in the transition process.
Our goal is twofold: first, to show how TPT can be formulated
for any observables, and second, more narrowly in the context of
this study, how the dynamics become clearer when those observ-
ables are well-chosen.

a. An eddy enstrophy formulation of
the Holton–Mass model

A common diagnostic for wave–mean flow interaction sys-
tems is the wave activity, A5 rsq

′2 /(2yq), whose evolution is
related to the Eliassen–Palm (EP) flux divergence (Andrews and
McIntyre 1976). Yoden (1987b) used wave activity extensively to
analyze the vacillating regime (our set B) of the Holton–Mass
model, in particular the upward wave propagation that desta-
bilizes the vortex. Below we derive a related set of equations
for the eddy enstrophy, which enjoys a simpler balance equa-
tion and which we have found is better numerically suited for
TPT analysis.

The first step in deriving the EP relation is to multiply the
QGPV Eq. (4) by q′ and take a zonal average, yielding

t
q′2

2

( )
1 y ′q′yq 5 q′(sources 2 sinks): (23)

We wish to work with the projected version of the equation,
Eq. (3b), rather than the original PDE, to account for the
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FIG. 5. Vertical profiles of transition states and tendencies. (left) U(z) averaged over
q1B 5 0:1, 0:5, and 0:9. Orange curve is the mean, and gray envelopes represent the middle 25th-,
50th-, and 90th-percentile ranges. Dashed blue and red curves represent U(z) for the fixed points
a and b. (right) As in the left column, but for eddy meridional heat flux y ′T′ .
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approximation sin2(‘y) ’ « sin(‘y) introduced by Holton and
Mass (1976) for projecting quadratic nonlinearities. The pro-
cedure is summarized below, and spelled out more thoroughly
in section 4 of the supplement.

Because of the ansatz (2), q′ is represented in the projected
equations by

q′ ↔ 2G2(k2 1 ‘2) 2 1
4
1 2z

[ ]
C

5: (2d 1 2z)C, (24)

where ↔ denotes correspondence between the full governing
equations and the projected, nondimensionalized equations in
the Holton–Mass model. Recall that C is the complex ampli-
tude for the zonal-perturbation streamfunction c′(x, y, z, t), in
geostrophic balance with the wind (u, y).

As a general rule, the zonal average of the product of two
wave quantities c′

1 and c′
2 of the form in Eq. (2) is found by

the following formula:

c′
1c

′
2 5 Re{C1e

ikx}Re{C2e
ikx}

5 Re{C*
1C2}: (25)

Therefore, we multiply both sides of Eq. (3b) by the complex
conjugate of (24) and take the real part to obtain

tE 1 Fqbe 5 D, (26a)

where

E 5
1
2
ez|(2d 1 2z)C|2

↔ 1
2
q′2 (26b)

represents the eddy enstrophy,

Fq 5 kezIm{C*Czz}
↔ y ′q′ (26c)

represents the meridional eddy PV flux,

be 5 G2b 1 «(G2‘2U 1 Uz 2 Uzz)
↔ yq (26d)

represents the meridional PV gradient, and

D 5 2Re ez[(2d 1 2z)C*] 3 z 2
1
2

( )
a z 1

1
2

( )
C

[ ]{ }

↔ q′(sources 2 sinks) (26e)

represents the production and dissipation of enstrophy.
The standard EP relation would be found by dividing both

sides by the meridional PV gradient be, as in Yoden (1987b).
Instead, we next turn to the mean-flow Eq. (3a), which is an
evolution equation for the PV gradient be rather than U di-
rectly. Multiplying through by be, we find

tG 5 Rbe 1 Fqbe, (27a)

where

G :5
be

«‘

( )2
, (27b)

R :5
2

«‘2
ezz[e2zaz(U 2 UR)]: (27c)

The new quantity G(z) is the squared meridional gradient of
zonal-mean potential vorticity, which is highly correlated to
zonal wind strength U(z) in the Holton–Mass model; R is a re-
laxation coefficient for G, strengthening the vortex via radia-
tive cooling.

The advantage of this alternative EP relation is now clear:
adding together Eqs. (26) and (27), the meridional PV trans-
port Fqbe cancels to give

t(G 1 E) 5 Rbe 1 D: (28)

In this form, all the dissipative effects are contained on the
right-hand side via the cooling coefficient a(z), which appears
both in D and R. G 1 E would conserved, at every altitude
separately, in the absence of dissipation and stochastic forc-
ing. In this limit, an increase in eddy enstrophy E can only oc-
cur at the expense of the mean PV gradient characterized by
G. Of course, both nonconservative effects}dissipation and
stochastic forcing}are critically important; vacillation cycles
and transitions are possible only because the Holton–Mass
model, like the full atmosphere, is an open system. The utility
of Eq. (28) is to isolate those nonconservative effects as al-
most extrinsic inputs.

b. Using the reactive current to quantify the importance
of nonconservative processes

Dissipation and forcing act to disrupt the conservation of
G 1 E, with a specific pattern shown in Fig. 6. The reactive
current is shown at three altitudes, as in Fig. 3, but this time in
the space (G1/2, E1/2) instead of (U, IHF). We take square
roots because the visualizations are clearer, and the units
of s21 are more comparable with those of zonal wind U(z)
and radiative cooling a(z). [We note that the fixed point b in
Fig. 6d appears to have committor ,1; this is possible when
projecting out nonlinear coordinates because set B is defined
based on the 30-km level, and the state-space regions that re-
semble b at 10 km may not resemble it at 30 km.] In the upper
stratosphere, at z5 30 km (Figs. 6c,f), the main channel of re-
active current flows along a circular arc, approximately con-
serving G 1 E, all the way through the q1B 5 0:9 surface: the
evolution of an SSW is a nearly conservative interaction be-
tween waves and the mean flow right up to the end. Then, the
current weakens in magnitude and spreads out, indicating
the critical nonconservative processes at the end, where the
breaking and dissipation of the anomalous waves cements the
SSW event. Just as in the (U, IHF) space, the reactive density
pAB decreases along that circular arc, meaning the transition
paths accelerate.

On the other hand, JAB projected at z 5 10 km (Figs. 6a,d)
shows that the dynamics are never conservative in the lower
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stratosphere: the initial motion points not along a circular arc
but directly leftward, such that G 1 E is decreasing from the
start. From the enstrophy budget in (28), we conclude that a
combination of dissipation and stochastic forcing acts strongly
at 10 km to precondition the vortex. The next subsection
shows that stochastic forcing plays the more decisive role.

Finally, consider the middle altitude of 20 km, where JAB has a
shape that is intermediate between the current at 10 and 30 km. It
does not have distinctly positive or negative curvature, but flows
along a straight channel fromA toB. Twenty kilometers seems to
be in just the right altitude range to feel significant dissipation and
stochastic forcing}a feature of the lower boundary}but also to
channel a good share of the loss of G to the gain of E, a quasi-
conservative property of the loftier 30 km. The resulting
committor, expected lead time, and reactive current are ap-
proximately linear functions of G1/2(20 km) and E1/2(20 km).
Indeed, the wind and heat flux at 20 km were the most useful
for prediction in (Finkel et al. 2021, their section 4).

Figures 7a–c show the composite evolution of G 1 E in or-
ange, along with G in blue and E in pink, at the same three al-
titudes 10, 20, and 30 km. All three altitudes show evidence of
dissipation, with G 1 E weakening as the committor increases,
but with distinct differences in the rates. The G 1 E composite is
concave up at 10 km, implying dissipation is most important at
the early stage, when the predictability of the event is limited. At
20 km, the composite is practically linear, implying that dissipa-
tion maintains a constant role in the event’s evolution, gradually

opening the valve to wave propagation at the last stage of the
event. At 30 km, the composite is concave down: the flow is ini-
tially conservative, with exchange between mean flow and eddies
at the onset of vortex breakdown, followed by strong dissipation
of the waves when the event is all but assured.

At 20 and 30 km, the distribution of G 1 E begins symmetric,
with the mean (orange) tracking the median (near the center of
the dark gray band). Then between q1B 5 0:6and 0:7, the lower
tail of the distribution expands quickly, skewing the distribution
negative. The distribution at 10 km maintains a slight negative
skew for the entire transition path. The skewness reflects the occur-
rence of “minor warmings” preceding the SSW, when the vortex
begins to break down, but partially recovers before thefinal event.

The composites, as well as the reactive currents, support
the notion of the “typical” transition path as an initially non-
conservative creep at low altitudes, opening up a valve to al-
low waves to propagate upward, finally yielding a very abrupt
collapse at high altitudes follows after a long, mostly conser-
vative phase. With the enstrophy budget (28), we can assess
the importance of each term by plotting those composites as
well. Figures 7d–f show the composite evolution of each term
at each altitude: Rbe (the relaxation of the squared mean PV
gradient, G) in blue, D (the dissipation of enstrophy, E) in
pink, and beFq (the transfer of enstrophy from G to E) in
black, all normalized by the total G 1 E at each level to ac-
count for the altitude-dependent differences in variability.
This allows us to compare how strong each dissipative force is

FIG. 6. Current in wave–mean flow coordinates. As in Fig. 3, but for a different observable subspace (G1/2,E1/2) instead of (U, IHF). See
text for definitions. Eddies are characterized by RMS perturbation PV (E1/2) and the mean flow by the zonal-mean PV gradient (G1/2).
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relative to the total budget. The sum (Rbe 1D)/(G 1 E)}the
normalized, deterministic tendency t(G 1 E)/(G 1 E)}is
shown as a dashed orange curve. Note that this tendency is
positive at 10 and 20 km even though G 1 E is actually de-
creasing. Without stochastic forcing, the system will always
approach state a or b, depending on where the initial condi-
tion falls relative to the surface dividing the two attractors.

To quantify the critical role of stochastic forcing in effecting
the transition at each committor level, we define the stochastic
tendency of G 1 E along transition paths:

LAB[G 1 E](x) 5

lim
Dt"0

E

{
(G 1 E)[X(t 1 Dt)] 2 (G 1 E)[X(t 2 Dt)]

2Dt
,

(29)

|X(t) 5 x and X(t) is in transition

}
, (30)

which is related to the ordinary infinitesimal generator L [see
Oksendal (2003) for mathematical background and the appendix
of Finkel et al. (2021) for its application to the Holton–Mass
model]. The supplement describes the numerical procedure to ap-
proximate LAB using short trajectories and a finite lag time.
There, we show thatLABf (x) is related to JAB · =f(x) for any ob-
servable f, so it is appropriate to view the arrows in Figs. 3 and 6 as
a proxy for the stochastic tendencies of the projected observables.

We introduce LAB to compare with the deterministic ten-
dency t(G 1 E)(x), which for a diffusion process of the form
(8) is simply v(x) · =(G 1 E)(x) by the chain rule. Their differ-
ence shows the impact of stochastic forcing responsible for
transitions. More specifically, LAB 2 t averaged over a com-
mittor level q0 highlights the stochastic effects responsible for
taking the system from q0 to q0 1 dq. Often it is not just a sin-
gle coin flip that decides the fate of X(t), but a whole se-
quence of random turns through state space aligning in just
such a way to navigate from A to B.

FIG. 7. Enstrophy budget analysis through the A " B transition. (a) Blue, pink, and orange curves represent mean values of G, E, and
their sum at z5 10 km, conditioned on the system being in a transition path and near a given committor level (which varies along the hor-
izontal axis). Gray envelopes represent the middle 25th-, 50th-, and 90th-percentile ranges of G 1 E; when the orange curve is not at the
center of the gray envelopes, the distribution is skewed. (b),(c) As in (a), but at z 5 20 and 30 km, respectively. (d) Solid orange curve
shows the expected tendency of G 1 E at 10 km, again conditioned on being in a transition path and near a given committor level. Dashed
orange curve shows the deterministic tendency at the same committor levels; the difference between the two indicates the role of stochas-
tic forcing. Blue curve shows the relaxation of G (the squared meridional PV gradient), pink curve shows the dissipation of enstrophy, and
black curve shows the meridional transport of PV, Fqbe, which when negative indicates a gain for E at the expense of G. The sum of the
blue and pink curves gives the dashed orange curve. (e),(f) As in (d), but at z5 10 and 20 km, respectively. All tendencies are normalized
by G 1 E, as the legend shows, for a comparable vertical scale across altitudes.
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The role of stochasticity is most stark at 10 and 20 km
(Figs. 7d,e) and for q1B , 0:5, where LAB(G 1 E) is negative
while t(G 1 E) is positive, due to a strong positive tug of radi-
ative cooling versus the weak dissipation of enstrophy. As q1B
increases, the stochastic and deterministic tendencies grow
closer together: the more likely the transition to B, the easier
it is for deterministic drift to carry it out alone. At 30 km
(Fig. 7f), all forms of dissipation and forcing start out relatively
small compared to the magnitude of G 1 E, but as the path
progresses, they all diverge away from zero. Most notably, the
stochastic and deterministic tendencies never diverge very far;
if anything, stochastic noise slows the collapse of U(30 km) at
the end. It seems that to achieve the A " B transition, which
is defined entirely in terms of U(30 km), the most common
mechanism is a persistent negative push applied to lower alti-
tudes, and this ultimately sets up the higher altitudes for more
sudden, deterministic collapse after the “hard work” of eroding
the vortex from below ismostly finished.

In summary, the TPT diagnostics have demonstrated that
the SSW process begins with steady, significant decay of the
PV gradient (here, its squared gradient, G) at lower altitudes,
driven by the stochastic forcing, with only conservative
changes taking place at higher altitudes. This preconditioning
of the vortex opens up a valve to the midstratosphere. In the
late stages of the transition, starting between q1B 5 0:6and 0:7,
the upper-level winds decline very suddenly. This begins con-
servatively as eddies grow, exchanging energy with the mean
flow, and finishes nonconservatively, as friction dissipates the
waves.

6. Conclusions

Transition path theory (TPT) is a mathematical framework
that can be used to assess the near-term predictability and long-
term climatology of anomalous weather events. The framework
lends itself naturally to events associated with regime transitions,
but it can be applied to more general anomalies. The key is to be
able to define a suitable “reaction coordinate,” or measure of
progress, linking the event to the mean state. We have analyzed
the statistical ensemble of sudden stratospheric warmings
(SSWs) in the idealized Holton–Mass model. Here, measures of
the vortex strength (or the mean potential vorticity) and heat
flux (eddy enstrophy) provide natural coordinates for applying
the theory.

Probability densities and currents tell us how the system
evolves through state space during a breakdown of the polar
stratospheric vortex. The reactive current, JAB, allows one to
condition dynamical tendencies on the occurrence of a rare
event. By overlaying JAB over observable subspaces at differ-
ent altitudes in the stratosphere, we have identified the key
roles of dissipation and stochastic forcing in driving SSWs in
the Holton–Mass model. The stochastic driving represents the
effects of unresolved Rossby and gravity waves that have
been stripped from this highly truncated model. The action of
these nonconservative processes, stochastic driving in particu-
lar, matter most at lower altitudes early in the transition pro-
cess, conditioning the vortex, while the higher altitudes are
shielded from significant dissipation. It is only late in the

transition process, after the likelihood of the event has sur-
passed 60%, that the upper-level winds play a significant role
in the dynamics.

This work is an early application of TPT to atmospheric sci-
ence. We believe it holds potential as a framework for forecast-
ing, risk analysis, and uncertainty quantification. Thus far, it has
been used mainly to analyze protein folding in molecular dy-
namics, but is now being applied in diverse fields such as social
science (Helfmann et al. 2021), as well as ocean and atmo-
spheric science (Finkel et al. 2020; Helfmann et al. 2020; Miron
et al. 2021, 2022). TPT results are best interpreted when viewed
in a physically meaningful observable subspace of variables.
Utilizing physical knowledge and experiencewith the system al-
lows one to gain the most from the methodology. With the
rather simple Holton–Mass model, we identified such a sub-
space based on an enstrophy budget. In different versions of
quasigeostrophic dynamics, the wave activity (Nakamura and
Solomon 2010; Lubis et al. 2018) and other diagnostics based
on the transformed Eulerian mean (Andrews and McIntyre
1976) are likely to be informative coordinates.

Significant challenges remain for deploying TPT analysis
at scale to state-of-the-art climate models. We have used a
dynamical Galerkin approximation (DGA) short trajectory
analysis algorithm to compute TPT quantities. One important
limitation of this computational pipeline is the data genera-
tion step. We used a long direct simulation to sample the
background climatology, which served the double purpose of
seeding initial data points for short trajectories and providing
a ground truth for validating the accuracy of DGA. The
former point is critical: one must cover the space of initial
conditions to capture the dynamics of extreme events. In
some cases, short trajectory data already exist, e.g., from the
subseasonal-to-seasonal (S2S) database (Vitart and Robertson
2018), which we have used recently in Finkel et al. (2022) to
estimate centennial-scale SSW rates from only 21 years of en-
semble forecasts. In other cases, it is advantageous to generate
fresh data in undersampled regions of state space, which
would require more advanced sampling methods such as the
adaptive sampling strategies proposed in Lucente et al. (2021)
and Strahan et al. (2022), or rare event simulation schemes
such as in Mohamad and Sapsis (2018), Ragone et al. (2018),
Webber et al. (2019), and Ragone and Bouchet (2020).

Acknowledgments. During the time of writing, J.F. was
supported by the U.S. DOE, Office of Science, Office of
Advanced Scientific Computing Research, Department of
Energy Computational Science Graduate Fellowship under
Award DE-SC0019323. During the time of writing, R.J.W.
was supported by New York University’s Dean’s Disserta-
tion Fellowship and by the Research Training Group in
Modeling and Simulation funded by the NSF via Grant
RTG/DMS-1646339. E.P.G. acknowledges support from the
NSF through Grants AGS-1852727 and OAC-2004572. This
work was partially supported by the NASA Astrobiology
Program, Grant 80NSSC18K0829, and benefited from par-
ticipation in the NASA Nexus for Exoplanet Systems
Science research coordination network. J.W. acknowledges

J OURNAL OF THE ATMOS PHER I C S C I ENCE S VOLUME 80532

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 02/20/23 01:10 PM UTC



support from the Advanced Scientific Computing Research
Program within the DOE Office of Science through Award
DE-SC0020427 and from the NSF through Award DMS-
2054306. The computations in the paper were done on the
high-performance computing cluster at New York Univer-
sity. We thank John Strahan, Aaron Dinner, and Chatipat
Lorpaiboon for many helpful conversations and methodo-
logical advice.

Data availability statement. The code to produce the dataset
and results, either on the Holton–Mass model or on other sys-
tems, is publicly available at https://github.com/justinfocus12/
SHORT. Interested users are encouraged to contact J.F. for
more guidance on usage of the code.

REFERENCES

Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in
horizontal and vertical shear: The generalized Eliassen-Palm
relation and the mean zonal acceleration. J. Atmos. Sci., 33,
2031–2048, https://doi.org/10.1175/1520-0469(1976)033,2031:
PWIHAV.2.0.CO;2.

Antoszewski, A., C. Lorpaiboon, J. Strahan, and A. R. Dinner,
2021: Kinetics of phenol escape from the insulin R6 hexamer.
J. Phys. Chem., 125B, 11 637–11 649, https://doi.org/10.1021/
acs.jpcb.1c06544.

Birner, T., and P. D. Williams, 2008: Sudden stratospheric warm-
ings as noise-induced transitions. J. Atmos. Sci., 65, 3337–
3343, https://doi.org/10.1175/2008JAS2770.1.

Bolhuis, P. G., D. Chandler, C. Dellago, and P. L. Geissler, 2002:
Transition path sampling: Throwing ropes over mountain
passes in the dark. Annu. Rev. Phys. Chem., 53, 291–318,
https://doi.org/10.1146/annurev.physchem.53.082301.113146.

Charlton, A. J., and L. M. Polvani, 2007: A new look at strato-
spheric sudden warmings. Part I: Climatology and modeling
benchmarks. J. Climate, 20, 449–469, https://doi.org/10.1175/
JCLI3996.1.

}}, and Coauthors, 2007: A new look at stratospheric sudden
warmings. Part II: Evaluation of numerical model simulations.
J. Climate, 20, 470–488, https://doi.org/10.1175/JCLI3994.1.

Charney, J. G., and P.G.Drazin, 1961: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere. J. Geo-
phys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083.

}}, and J. G. DeVore, 1979: Multiple flow equilibria in the atmo-
sphere and blocking. J. Atmos. Sci., 36, 1205–1216, https://doi.
org/10.1175/1520-0469(1979)036,1205:MFEITA.2.0.CO;2.

Christiansen, B., 2000: Chaos, quasiperiodicity, and interannual vari-
ability: Studies of a stratospheric vacillationmodel. J. Atmos. Sci.,
57, 3161–3173, https://doi.org/10.1175/1520-0469(2000)057,3161:
CQAIVS.2.0.CO;2.

Crommelin, D. T., 2003: Regime transitions and heteroclinic connec-
tions in a barotropic atmosphere. J. Atmos. Sci., 60, 229–246,
https://doi.org/10.1175/1520-0469(2003)060,0229:RTAHCI.2.
0.CO;2.

}}, J. D. Opsteegh, and F. Verhulst, 2004: A mechanism for atmo-
spheric regime behavior. J. Atmos. Sci., 61, 1406–1419, https://doi.
org/10.1175/1520-0469(2004)061,1406:AMFARB.2.0.CO;2.

Du, R., V. S. Pande, A. Y. Grosberg, T. Tanaka, and E. S.
Shakhnovich, 1998: On the transition coordinate for pro-
tein folding. J. Chem. Phys., 108, 334, https://doi.org/10.
1063/1.475393.

E, W., and E. Vanden-Eijnden, 2006: Towards a theory of transi-
tion paths. J. Stat. Phys., 123, 503–523, https://doi.org/10.1007/
s10955-005-9003-9.

}}, W. Ren, and E. Vanden-Eijnden, 2004: Minimum action
method for the study of rare events. Commun. Pure Appl.
Math., 57, 637–656, https://doi.org/10.1002/cpa.20005.

Esler, J. G., and M. Mester, 2019: Noise-induced vortex-splitting
stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc.,
145, 476–494, https://doi.org/10.1002/qj.3443.

Finkel, J., D. S. Abbot, and J. Weare, 2020: Path properties of at-
mospheric transitions: Illustration with a low-order sudden
stratospheric warming model. J. Atmos. Sci., 77, 2327–2347,
https://doi.org/10.1175/JAS-D-19-0278.1.

}}, R. J. Webber, E. P. Gerber, D. S. Abbot, and J. Weare,
2021: Learning forecasts of rare stratospheric transitions from
short simulations. Mon. Wea. Rev., 149, 3647–3669, https://
doi.org/10.1175/MWR-D-21-0024.1.

}}, E. P. Gerber, D. S. Abbot, and J. Weare, 2022: Revealing
the statistics of extreme events hidden in short weather fore-
cast data. arXiv, 2206.05363v1, https://doi.org/10.48550/arXiv.
2206.05363.

Forgoston, E., and R. O. Moore, 2018: A primer on noise-induced
transitions in applied dynamical systems. SIAM Rev., 60,
969–1009, https://doi.org/10.1137/17M1142028.

Frame, D. J., S. M. Rosier, I. Noy, L. J. Harrington, T. Carey-
Smith, S. N. Sparrow, D. A. Stone, and S. M. Dean, 2020:
Climate change attribution and the economic costs of ex-
treme weather events: A study on damages from extreme
rainfall and drought. Climatic Change, 162, 781–797, https://
doi.org/10.1007/s10584-020-02729-y.

Freidlin, M. I., and A. D. Wentzell, 1970: Random Perturbations
of Dynamical Systems. Springer, 460 pp.

Helfmann, L., E. Ribera Borrell, C. Schütte, and P. Koltai, 2020:
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