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ABSTRACT

Extreme weather events are simultaneously the least likely and the most impactful features of the climate system, increasingly so as
climate change proceeds. Extreme events are multi-faceted, highly variable processes which can be characterized in many ways: return
time, worst-case severity, and predictability are all sought-after quantities for various kinds of rare events. A unifying framework is needed
to define and calculate the most important quantities of interest for the purposes of near-term forecasting, long-term risk assessment, and
benchmarking of reduced-order models. Here we use Transition Path Theory (TPT) for a comprehensive analysis of sudden stratospheric
warming (SSW) events in a highly idealized wave-mean flow interaction system with stochastic forcing. TPT links together probabilities,
dynamical behavior, and other risk metrics associated with rare events that represents their full statistical variability. At face value,
fulfilling this promise demands extensive direct simulation to generate the rare event many times. Instead, we implement a highly parallel
computational method that launches a large ensemble of short simulations, estimating long-timescale rare event statistics from short-term
tendencies. We specifically investigate properties of SSW events including passage time distributions and large anomalies in vortex strength
and heat flux. We visualize high-dimensional probability densities and currents, obtaining a nuanced picture of critical altitude-dependent
interactions between waves and the mean flow that fuel SSW events. We find that TPT more faithfully captures the statistical variability
between events as compared to the more conventional minimum action method.

1. Introduction Historically, significant effort has already gone toward
estimating rare event probabilities and forecasting them
with as much lead time as possible (e.g., Stephenson et al.
2008; Kim et al. 2019; Vitart and Robertson 2018). Earth
system models are growing ever more powerful and het-
erogeneous, from fully coupled GCMs to regional climate
models to machine learning parameterizations, and there
is increasing interest in measuring their fidelity on extreme
events, beyond just mean behavior (Hu et al. 2019). Captur-
ing extremes is arguably the most important task of climate
modeling, and part of our goal here is to motivate a holis-

due to both a changing climate and increasing reliance on tic and relevant set of quantities that a good model should

weather-susceptible infrastructure (e.g., Mann et al. 2017, reproduce. . .
Frame et al. 2020). Commonly used benchmarks are sensible and impor-

tant, but necessarily ad hoc given the variety of extreme
events. Quantiles of univariate distributions provide some
information. For example, O’Gorman and Dwyer (2018)

Extreme weather events, by definition, are exceptional
and occupy the fringes of the atmosphere’s behavior dis-
tribution. Nevertheless, extreme events play an important
role in atmospheric circulation. Large storms and changes
in circulation are responsible for rapid movement of heat
and moisture through the atmosphere. From a human per-
spective, weather is inconsequential when it follows mean
behavior; it is the anomalies that challenge society (Lesk
etal. 2016; Kron et al. 2019). Extreme weather is taking an
increasing toll on ecosystems, economies, and human life,
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use the 99.9th percentile of 3-hour rainfall, as a function of
latitude, to validate a machine-learned convection parame-
terization. Qi and Majda (2020) incorporate tail probabili-
ties explicitly into the loss function for a machine-learned
shallow water wave model. Extreme value theory provides
another mathematically rigorous way to quantify tails (Katz
2010; Lucarini et al. 2016). However, fidelity of different
metrics can conflict with each other. Li et al. (2018) exper-
imented with a regional climate model under increasing
temperature, and successfully matched observed trends in
spatial extent but failed to match observed trends in extreme
rainfall. Moreover, the many scales and components of the
climate system lead to ambiguous definitions of extremes.
For example, atmospheric blocking is a recurrent large-
scale feature driving many kinds of weather extremes, but
a multitude of definitions hampers objective comparison
across models (Woollings et al. 2018; Chan et al. 2019;
Galfi et al. 2019; Chattopadhyay et al. 2020).

The heterogeneity of rare weather events and their im-
pacts calls for a unifying, but flexible, rubric for describ-
ing them. For a given event, however defined, we wish to
quantify its precursors, its frequency, and its spatiotempo-
ral structure. Most rare event studies, such as those cited
above, address some subset of these metrics depending
on the methodology, but rarely all together. Transition path
theory (TPT), introduced in E and Vanden-Eijnden (2006),
is a statistical mechanics framework that ties together all
of these quantities by abstracting the rare event into a path
through high-dimensional state space. TPT has been ap-
plied within numerous studies of conformational change
in biomolecules (e.g., Noé et al. 2009a; Meng et al. 2016;
Liu et al. 2019; Thiede et al. 2019; Strahan et al. 2021), but
has only recently been applied to geophysical dynamics.
Miron et al. (2021) used TPT to map out garbage trans-
port paths across the two-dimensional ocean, and Finkel
et al. (2020) used TPT to understand rare stratospheric
transitions across a three-dimensional model state space
due to Ruzmaikin et al. (2003) and Birner and Williams
(2008). Here, we explore a stochastically forced version of
the classic model of Holton and Mass (1976), one of the
first models to capture important aspects of sudden strato-
spheric warming (SSW). In the language of TPT, a SSW
event is a system trajectory that begins in a climatologi-
cally “normal” state (a strong polar vortex) and ends in an
“extreme” state (a sudden warming, where the vortex has
been broken down).

TPT analysis is related to, but distinct from, the forecast-
ing problem, whose importance is well-recognized. Every
extra day of advance warning helps us prepare for the
ensuing cold snaps following SSW. The subseasonal-to-
seasonal (S2S) timescale on which SSW occurs is an out-
standing challenge in state-of-the-art weather forecasting
(Vitart and Robertson 2018). Many data-driven and prob-
abilistic approaches are building on traditional ensemble
forecasting methods. In a recent paper (Finkel et al. 2021),

we computed two key forecasting quantities for a prototype
model of SSW, the Holton-Mass model—namely, the com-
mittor probability and lead time, to be defined below—as
functions of initial condition, finding optimally predictive
physical observables for SSW onset. Tantet et al. (2015)
computed early warning signs of atmospheric blocking by
estimating a committor (by a different name) in a reduced
state space. Lucente et al. (2019) and Lucente et al. (2021)
have also computed committor functions for simple models
of El Nifio, mathematically quantifying the so-called pre-
dictability barrier. Bayesian machine learning (Chen et al.
2021) and kernel forecasting (Wang et al. 2020) are also
being investigated in the quest to forecast El Nifio.

But near-term forecasting alone does not completely
characterize long-term risk or the event’s mechanism from
start to finish; this is what TPT provides. In the present
paper, we use TPT to connect the short-term weather fore-
casting problem to the long-term climatology of SSW
events, including their precursors, overall frequency, and
distribution of severity (by several metrics). Furthermore,
TPT offers detailed insight into the development of SSW
through the probability current: the average tendency of
the system conditioned on the occurrence of an SSW. By
visualizing the current in various ways, we will quanti-
tatively assess the interplay between wave disturbances,
zonal wind anomalies, and heat flux during SSW, and the
extent to which they are uniquely associated with an SSW.
Crucially, TPT tells us the variability of these processes,
not just their mean behavior. In particular, we will see a di-
chotomy between successive stages of an SSW event. The
preconditioning of the polar vortex manifests as a steady,
predictable weakening of the lower-level zonal wind. The
latter stage is an abrupt burst of heat flux and collapse of
zonal wind that is much more variable in its timing and
intensity. These are only a few deliverables of TPT, which
can be adapted to probe many other weather phenomena.

The statistical ensemble of transition pathways charac-
terized by TPT can be compared to the single pathway
found by minimizing the Freidlin-Wentzell action (Frei-
dlin and Wentzell 1970). That pathway is representative
of the rare event’s development in the low-noise limit
and is computed by the minimum-action method (e.g.,
E et al. 2004). “Noise” here means unresolved processes
that evolve quickly and unpredictably relative to the large-
scale variables of interest, and are typically represented by
stochastic forcing (e.g., Berner et al. 2017). The minimum-
action method plays a central role in recent rare event anal-
yses, such as Hoffman et al. (2006a) and Plotkin et al.
(2019) for tropical cyclones, Bouchet et al. (2014) for two-
dimensional fluid mechanics, and Dematteis et al. (2018)
for rogue waves. The prominent role of one single tra-
jectory is both a strength and weakness of this method:
eliminating all variability among realizations of the rare
event leads to a clear, but possibly biased, narrative.



The straightforward way to quantify the statistical en-
semble of transition paths is by direct numerical simulation
(DNS): integrate a model for a long time until many such
events are observed, and then proceed with statistical anal-
ysis. Alternatively, in very low-dimensional models, one
can compute the necessary quantities by fully discretizing
state space, as in Finkel et al. (2020). Unfortunately, for
rare events in high-dimensional models, discretization is
impossible and DNS becomes too expensive to generate a
data set with statistical power. In this paper, as in Finkel
et al. (2021), we circumvent this problem by simulating
very many, very short trajectories in parallel, and combin-
ing information from all of them to compute rare event
statistics without ever observing a complete rare event.
The particular approach we use was introduced in (Thiede
etal.2019; Strahan et al. 2021) and extends work in the bio-
physics community over the last decade on approaches to
analyze long timescale phenomena using short simulated
trajectories (e.g., Jayachandran et al. (2006), Chodera and
Noé (2014) and references therein). In particular in (Noé
et al. 2009b) the authors combine an approach using short
simulated trajectories similar to the one employed in this
paper with TPT to study a protein folding event.

This paper is organized as follows. In section 2 we sum-
marize the dynamical model under study. In section 3, we
define TPT quantities of interest and visualize them on the
Holton-Mass model. In particular, we use probability den-
sities and currents to give a description of the geometry
and dynamical behavior of transition pathways. We also
examine the relationship between TPT and the minimum
action method. The resulting physical insight will motivate
the more technical section 4, where we outline the compu-
tational approach and tabulate some quantitative statistical
properties of transition paths and their variability. We as-
sess future possibilities and conclude in section 5.

2. Model description

We use exactly the same prototype model for SSW events
as analyzed in Finkel et al. (2021). We review the key
features of the model here, but direct the reader to section
2b of Finkel et al. (2021) for more details.

Holton and Mass (1976) developed a minimal model
for the variability of the winter stratospheric polar vortex,
capturing the wave-mean flow interactions behind sudden
stratospheric warming events. The model’s prognostic vari-
ables consist of a zonally averaged zonal wind u(y, z,¢) and
a perturbation geostrophic streamfunction ¥’ (x,y, z,t) re-
duced down to a single wave mode. Two competing forces
in the model bring about bistability. First, an altitude-
dependent radiative cooling @(z) relaxes the zonal wind
toward a strong polar winter state in thermal wind bal-
ance with a radiative equilibrium temperature field. This is
the basic mechanism maintaining the winter polar vortex,
which in the Holton-Mass model corresponds to a stable
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equilibrium we denote state a. Second, a wave perturbation
is forced at the lower boundary, the nominal tropopause, as-
sociated with stationary waves in the troposphere induced
by topography and land-sea contrast. The second state in
the model is a wave propagation regime, where upward
propagating stationary waves flux momentum down to the
lower boundary, creating a highly disturbed state with weak
zonal winds. This is a second stable equilibrium we denote
state b.

Sudden stratospheric warming events are abrupt tran-
sitions from the strong vortex state (a) to the disturbed,
wave driven state (b). If a strong wave from below hap-
pens to catch the stratospheric vortex in a “vulnerable”
configuration—e.g., measured by an index of refraction
(Charney and Drazin 1961; Yoden 1987)—then a burst of
wave activity can propagate upward, ripping apart the polar
vortex and causing zonal wind to collapse. With certain pa-
rameters, the vortex can get stuck in repeated “vacillation
cycles”, in which the vortex begins to restore with the help
of radiative forcing, only to be undermined quickly by the
wave. The coexistence of these two regimes is fundamental
to the Holton-Mass model.

For reference we write down the PDE system here, but
refer the reader to Holton and Mass (1976); Yoden (1987);
Christiansen (2000) and Finkel et al. (2021) for complete
explanations. The zonal wind u(y,z,¢) and perturbation
streamfunction ¢’(x,y,z,t) are projected onto a single
wavenumber k = 2/(acos6) in the zonal direction and a
single wavenumber £ = 3/a in the meridional direction (a =
the radius of Earth), hence the ansatz

u(y,z,t) =U(z,t)sin({y) 1
W' (x,y,2,1) = Re{¥(z,1)e**}e?/?H sin(€y).  (2)

where H is the scale height, 7 km. In the resulting highly
reduced model, the state space consists of ¥(z,¢) (which
is complex) and U(z,t). We impose the boundary condi-
tions according to a height parameter, &, representing the
orographic forcing, and a background radiative zonal wind
profile UR(z) that increases linearly with altitude:
gh
¥(0,1) X
U(0.0) =UR(0),

\P(Ztop’t) :O, (3)
azU(Ztup’l‘) = 8ZUR(Ztap)-

We fix h =38.5m in this study; g and fj are the gravitational
acceleration and coriolis parameter, respectively.

The reduced state variables (2) are then inserted into
the prediction equation for u and the linearized quasi-
geostrophic potential vorticity equation for ’. We nondi-
mensionalize the equations with the parameter G =
H?N?/(f}L?), where T = 86400 (1 day) and L is a tun-
able length scale. Note that G = L4 /L, where Ly = NH/ fj
is the deformation radius. In order to make a data set ho-
mogeneously distributed in state space, we select a length
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scale L =2x 10° m and thus G = 4.4, a choice motivated
by numerics rather than dynamics. The resulting QGPV
equation reads
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specifying the tendency of the wave ¥. The mean flow
prediction equation becomes

a 0*\aU
(—QZfz—a—z+a—zz)E=[<az—a>vf—anz] ®
g 82 skl* | 9’y
—|:(a/z—a’)6—z+(la—zz U+ ) e Im{\P 8Z2 }

where @ = a(z) is the cooling coefficient and £ = 8/(37) is
a mode projection coefficient. The notation follows Chris-
tiansen (2000), where the parameters are explained in more
detail.

After discretizing to 27 vertical levels, we end up with a
state space with a dimension of d =3 x (27 -2) =75, with
a state vector

X(t) = [Re{¥()}.Im{¥(1)},U(1)] eR” (6)

each of the three entries representing a vector with 25
discrete altitudes.

SSWs are associated with both internal stratospheric
variability, generated even with time-independent forcing
from the troposphere (Scott and Polvani 2006; Matthew-
man and Esler 2011), and external time-dependent forcing
(Sjoberg and Birner 2012; Scott et al. 2008). As a mini-
mal demonstration of our computational approach, we con-
sider only time-independent boundary conditions, but add
stochastic perturbations to the zonal wind profile, as spec-
ified in Finkel et al. (2021), to drive transitions between
the weak and strong vortex states. The noise is smooth in
space, but white in time, consisting of two Fourier modes in
the vertical. This stochasticity represents unresolved pro-
cesses such as gravity waves, an idea originally put forward
by Birner and Williams (2008) and used more recently by
Esler and Mester (2019). It could also represent model
error, i.e., variations in the flow associated with smaller
scale waves that have been truncated. We emphasize that
while this use of stochastic forcing affects the transition
path statistics, it does not affect the method for computing
them.

The two stable equilibria arising from these competing
forces are depicted in Fig. 1 (a,b): a is the strong vortex
state, with a linearly increasing zonal wind profile and
almost barotropic streamfunction, while b is the disturbed

vortex state, with a weak zonal wind profile and a phase-
tilted streamfunction. A transition path is defined as an
unbroken segment, or trajectory, of the system that begins
in a region A of state space and travels to another region
B without returning to A. In this paper we define A and
B as spherical neighborhoods (in non-dimensional space)
about the two fixed points:

A={xeR?:|x—a|<r =8} (7
B={xeR%:|x-b| <rp=30} (8)

A larger “ball” around B is needed to capture equivalent
populations in each state. An “SSW” is then a transition
from A to B, while the reverse, from B to A, represents the
recovery of the vortex. This departs slightly from Finkel
et al. (2021), where we defined A and B based on zonal
wind at a single altitude. The definition based exclusively
on the zonal wind near 10 hPa was chosen to be consistent
with the standard WMO definition. In this paper, we focus
on dynamical insights into the entire process from A to B,
and the transient dynamics are not over once U(30 km)
drops below an arbitrary threshold.

The second row of Fig. 1 illustrates the state space geom-
etry. The 75-dimensional fixed points a and b are projected
onto two-dimensional subspaces, along with plots of the
system’s evolution from a long control simulation includ-
ing two transition paths from A — B and back. The heavy
clusters of black curves around a and b indicate that their
neighborhoods A and B are metastable, the vortex tend-
ing to linger in one of the regions for an extended period
before quickly switching to the other. The transition paths
are highlighted in orange (A — B) and green (B — A),
beginning precisely when the path last exits A and ending
when it first enters B or vice versa. These two samples are
only anecdotal, meant to give a general sense for the dy-
namics. The transition path ensemble refers to the infinite
collection of paths, which vary significantly from the two
samples shown.

The subspaces in Fig. 1(c,d) are dynamically relevant
to SSW physics. The vertical axis is zonal wind at 30 km,
approximately where the b profile reaches its minimum.
Panel (c) has wave magnitude |¥| in the horizontal, which
is greatly enhanced during vacillation cycles and during
the A — B transition. Panel (d) has vertically integrated
heat flux up to 30 km, abbreviated IHF(30 km), in the
horizontal, which quantifies both the magnitude and phase
of the streamfunction across altitudes. In the Holton-Mass
model,

—= Hfo 0y’ 0y’ g 209
T'(z) = —=————F—x 7 |¥ — 9
v'T'(z) R 9y 02 o e W(2)| 9z ©
fo is the Coriolis parameter at 60°N, R is the ideal gas

constant for dry air, and ¢ is the phase of ¥. Hence the
heat flux is related to the amplitude and phase tilt of the
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Fi1G. 1. The two stable equilibria of the Holton-Mass model, similar to Fig. 1 of Finkel et al. (2021). The upper two panels show the zonal
wind U (z) and the streamfunction i’ (z) for the two fixed points a (the strong vortex, in blue) and b (the weak vortex, in red). The lower panels
project a model integration onto two subspaces: (U, |¥|) and (U,IHF), at 30 km. Several SSW events (transitions from A — B, highlighted in
orange) and recovery events (transitions from B to A, highlighted in green), are observed.

streamfunction. The horizontal axis of (d) is also weighted
by density before being integrated:

30km

IHF(30km) = / e AT (2) dz (10)

Okm

30km
0
m/ ()2 2E dz
0 0z

km

The right side measures the area swept out in the complex
plane by ¥(z), Okm < z < 30km. Whether interpreted dy-
namically or geometrically, this quantity is important for
SSW and separates a and b more than the wave amplitude
itself, as seen by the horizontal separation between a and
b in panel (d).

Fig. 1 (c) and (d) illustrate some of the transitory dy-
namics we wish to capture quantitatively. For example, the
orange A — B segments take an excursion to especially

large wave magnitude and negative zonal wind before ap-
proaching set B and the cluster of vacillation cycles. This
motivates the more restrictive definitions of A and B in (7):
here, the early and late transition stages are part of the path,
rather than being obscured by the states. The green B — A
segments take an altogether different route through state
space, gradually increasing in zonal wind and decreasing
in wave amplitude, with a late negative spike in IHF.

3. Describing transition paths: sample and mean be-
havior

We first point out some physically notable features of
simulated transition paths. Motivated by anecdotal obser-
vations, we then visualize probability densities and cur-
rents from TPT, which characterize the statistical behavior
of transition paths, providing a richer description than the
minimum-action path.
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a. Qualitative transition path properties

In the left column of Fig. 2, we plot several observable
functions for the first 3000 days of a control simulation,
the same data as shown in Fig. 1 (c) and (d). The functions
are zonal wind, U, at 30 km, streamfunction magnitude,
|| at 30 km, heat flux, v/T”, at 30 km, and the vertically
integrated heat flux, IHF, up to 30 km. The sets A and B
divide the dynamics into four separate “phases’” delimited
by highlights in the time series plots. (1) In the A — B
phase, marked by orange, the vortex is breaking down, en
route from A to B. (2) In the B — A phase, marked by
green, the vortex is recovering from the vacillating regime
back to the radiatively driven regime. (3) In the A — A
phase, the vortex is strong and remaining strong for the time
being, either inside set A or taking a brief excursion before
returning back to A (between the end of a green segment
and the start of an orange segment). (4) In the B — B phase,
the vortex is weak, caught in ongoing vacillation cycles in
the vicinity of B (between the end of an orange segment
and the start of a green segment).

Fig. 2 demonstrates that the system behaves very differ-
ently in each phase. Zonal wind is weaker overall during
B — B than A — A (by definition), but moreover it os-
cillates at a higher frequency, similar to the “vacillation
cycles” observed originally by Holton and Mass (1976).
But the largest negative zonal wind spikes appear to occur
during the SSW, i.e., during the A — B phase; see the two
large dips in zonal wind at the first transition in Fig. 1,
which corresponds to the orange transition path in Fig. 1
(c) that loops twice. A similar pattern appears in both |¥|
and v'T” time series, where the B — B phase supports reg-
ular oscillations that are overshadowed by the preceding
A — B transition.

The vortex recovery phase B — A appears considerably
tamer, at least in terms of zonal wind, which exhibits no
obvious “extremal” behavior while recovering. Rather, the
oscillations inherent to set B gradually weaken through the
first half of the recovery, after which a smooth restoration
to A ensues. However, the lower left panel of Fig. 2 shows
unusually negative dips in IHF at 30 km midway through
the B — A transitions. IHF is a proxy for streamfunction
phase tilt and amplitude, which must decrease from B to A,
but the overshoot, indicating wave reflection and downward
propagation, is not necessary a priori.

These observations, though potentially insightful, are
based on only two transitions. We start to evaluate the hy-
potheses quantitatively by describing each phase with a
conditional probability distribution. TPT focuses specifi-
cally on the A — B and B — A phases, during which we
say that X is “reactive”, using a term from chemistry liter-
ature where the passage from A (reactant) to B (product)
models a chemical reaction.

DGA DNS
% Time A— A | 49.0 | 52.4+10.2
% Time A — B 6.8 42+1.0
% Time B — B 375 38.1+£9.7
% Time B — A 6.7 5.3+£2.0
Period (days) 1744 | 2058 +710

TABLE 1. Fraction of time that the system spends in each phase of
the SSW lifecycle, computed both from DGA and empirically from the
control simulation, plus or minus two standard deviations.

b. Steady-state and reactive probability densities

The right-hand column of Fig. 2 shows five probability
distributions projected onto the vertical coordinate. The
process as a whole exhibits a steady-state density n(x),
which describes the long-term probability that the system
is in a state near x. It can be computed simply by DNS, i.e.,
integrating the dynamics for a long time and binning data
into a histogram. We have instead performed the Dynamic
Galerkin Approximation (DGA) procedure (described in
the supplement) with only short simulations. 77(x), shown
in black in the right column of Fig. 2, is a weighted mixture
of the other four phase-specific densities 744, 7pB, TAB,
and g4 (the latter two are called reactive densities). The
weights are given by the percentage of time spent in each
phase, listed in Table 1 along with the average period of
the cycle (or inverse rate). The table presents numbers ac-
cording to both DGA and DNS. It is difficult to assess its
uncertainty, but we can assess the uncertainty in the DNS
estimate by dividing the long 2 x 10°-day simulation into
10 equal-sized chunks, calculating the appropriate statis-
tic in each chunk, and taking the sample variance of the
10 sample means. Table 1 presents the 95% confidence
interval of each number, i.e., two standard deviations in
each direction. The interval includes the DGA point esti-
mate in all cases except for the A — B time fraction. We
discuss numerical error and how it can be reduced in the
supplement.

Table 1 specifies the weight of each phase distribution
TAA, TAB, €tc., but their shapes reveal their unique charac-
teristics. Each density is peaked in a different place: while
7 is strongly bimodal with peaks near a and b, the reac-
tive densities have more probability at intermediate wind
strength, which transition paths must cross through. 7z
even has a secondary peak around U = 20 m/s, suggesting
that the recovery process tends to stall or slow down on its
way back to A. Comparing with the B — A transition paths
highlighted in green, the slowdown seems to coincide with
the mid-recovery switch from weakening oscillations to
steady recovery of zonal wind.

map also has a secondary peak, not at intermediate
strength but rather at a negative extreme. This confirms
the observation above that zonal wind tends to plummet
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(transitions from A — B, highlighted in orange) and recovery events (transitions from B to A, highlighted in green), are observed.

especially low during the vortex breakdown process. Mean-
while, the negative IHF anomalies during B — A are also
borne out by the density mp4 in the lower right panel,
which has a slightly heavier negative tail than 7 or m4p.
Over the variable v'T7(30 km), the large spikes observed
in both of the two orange intervals suggest that 745 has a
heavier upper tail than the other distributions. The tail is
so small compared to its peak that a visual assessment is
not practical, and we confirm this observation below.

To corroborate these effects numerically, we display a
selection of lifecycle averages in Fig. 3. We have defined

three “indicator functions” tailored to capture the anoma-

lies described above:
I'(x) = 1{U(30km) < -20m/s}

I'(x) = 1{v'T"(30km) > 60K -m/s}
30km

e [

i.e., I'(x) in (11) is one if x is a state with U(30 km) < —20
m/s and zero otherwise. Assuming ergodicity, the fraction
of time spent with U(30 km) < —20 m/s is

T
I'(X(¢))dt =
-T

(1D
(12)

eTUHYT () dz < 0K~m2/s} (13)

lim — 14
0% 2T (14

f P (07(x) dx = (D),
]Rd

or equivalently, the area under the black curve in Fig. 2(b)
below the —20 m/s tick mark. The average can also be
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Fic. 3. Lifecycle means. For a given indicator function I'(x) rep-
resenting extremal behavior, e.g., a negative wind anomaly in (a), the
“overrepresentation” metric (I')x , 5 /(I')x says how much the A — B
phase is responsible for that anomalous behavior relative to its time
fraction. These are computed for each phase of the SSW lifecycle, both
using DNS (cyan bars) and from DGA (red bars) for a variety of anomaly
indicators I' defined in the subplot titles. Error bars are computed for
DNS by dividing the control simulation into 10 equal pieces.

restricted to any given phase. For example, (I') ., is the
fraction of time during A — B transitions that U(30 km)
< —20 m/s—in other words, the area under the orange curve
below the same mark. The ratio (I'),, /(") measures
the “overrepresentation” of negative wind anomalies in the
A — B phase.

Fig. 3 plots each of the three anomaly indicators for
each phase in the lifecycle, according to both DGA and
DNS, along with error bars for the latter (note the log scale
makes them asymmetric). Consider the A — B phase in the
top panel, indicating a ratio (I') 1, , /(I") » = 10. By default,
we would expect about 6.8% of negative wind spikes to
occur during A — B transitions, according to the DGA
time fraction in Table 1. The factor of 10 suggests that
instead, the A — B phase accounts for about 68% of such
anomalies. In terms of positive heat flux anomalies, the
A — B transition also punches above its weight, though
not quite ten times. The lower panel confirms that negative

IHF is a largely unique trait of B — A transitions. The
DGA/DNS matches are rough, but typically within the
error bars and consistent in terms of ranking phases against
each other.

These “reactive probability densities” can be projected
onto any observable of interest, providing a simple but
powerful tool to measure unique aspects of transition paths.
However, reactive densities do not tell the whole story,
because they are static. For example, the negative tail of
map over U(30 km) says nothing about the shape of the
vacillation cycles as they wind through state space. In other
words, reactive densities say where transitions go and for
how long they linger, but not the details of their route. In the
next two subsections we explain and visualize committors
and reactive currents (E and Vanden-Eijnden 2006), which
go further to describe the dynamic behavior of transition
pathways.

c. Committors

A necessary prerequisite to understand the motion of
transition pathways is a suitable measure of progress from
A to B, namely a committor function. Suppose an initial
condition X(#p) = x is observed with a vortex that is neither
strong nor fully broken down, so x ¢ AU B. X(t) will soon
evolve into either A or B, since both are attractive, and the
respective probabilities define the committor function:

q" (x) = Px{X (7" (t0)) € B} (15)
where 7 (t) is the first hitting time to set A or B,
*(t9) = inf{t > 19 : X(v*(tp)) € AUB} (16)

(a random variable), and the subscript x denotes a condi-
tional probability given X(#p) = x. We assume the system
is autonomous, so we can safely set 7y = 0 and drop the
argument from 7+ (however, the argument returns in the
mathematical formulation of TPT presented in section 1
of the supplement). We will also use the intuitive notation
q* (x) =Pg{x — B}, as ¢* simply tells how likely it is to
next go to B, not A. The committor measures probabilistic
progress toward B, and we argued for its utility as a forecast
in Finkel et al. (2021). However, it does not distinguish the
A — B phase from the B — B phase, i.e., it tells us nothing
about the past of X(#) for 7 < #y. For this we also need to
introduce the backward committor:

g~ (x) =Px{X(77 (1)) € A} =: Px{A — x} (17
where 77 (t() is the most recent hitting time
T (t9) =sup{t <t : X(77 (t9)) € AUB} (18)

The backward-in-time probabilities refer specifically to the
process X(t) at equilibrium, allowing us once again to set
to=0.



The forward and backward committors are shown in
Fig. 4(a) and (b). Note that their contour structures are
very different, a sign of irreversible behavior. In particular,
the negative extreme of zonal wind has both large ¢* and
large ¢~, meaning that whenever a negative wind anomaly
is observed, chances are high that the vortex has undergone
an SSW and is on its way from a strong vortex (state A)
to a weak vortex (state B). We see this more clearly by
combining the two committors:

g (x)q"(x) =Px{A > x}Px{x > B} (19)

=:Px{A — B} (20)
(1-g(x)(1-¢"(x)) =Px{B = x}Px{x > A} (21)
=:Px{B— A} 22)

We display these probabilities in Fig. 4(c,d) to highlight
signatures of the A — B and B — A transitions. The red
crescent along the right and bottom flank of state space con-
firms that large positive || spikes and negative U spikes
are strongly associated with the A — B transition, meaning
SSWs are responsible for a disproportionate share of these
anomalies. This confirms the precedence of the A — B
phase in Fig. 3(a), but also reveals details of the dynam-
ical interaction between zonal wind and wave amplitude.
Meanwhile, a small region of low |¥| and medium U is
associated with the B — A transition. A projection onto
(IHF,U) space (which we omit) confirms the association
between negative IHF anomalies and the B — A phase that
we have observed in Fig. 2 and Fig. 3(c).

The maps in Fig. 4(c,d) are related to the reactive den-
sities discussed in the last subsection, viz.

(23)
(24)

maB(X) < g (X)g” (X)7(X)
=Px{A — B}n(x)

and likewise for B — A. The proportionality constants are
for normalization. These maps, although static, hint at pre-
ferred routes through state space, which we confirm in the
next subsection by visualizing the reactive current.

d. Reactive current and minimum-action path

In parallel with the three probability densities 7(x),
map(x) and mpa(X) are three probability currents. The
equilibrium current J(x) is a vector field over R? that indi-
cates, roughly speaking, the “average” motion of the system
as it passes through x, regardless of the SSW phase. The
reactive current Jap(X) describes the average motion of
A — B transition paths crossing through x, and likewise
Jpa(X) describes B — A transitions. We define these cur-
rents precisely in the supplement, but first make an analogy
with fluid-dynamical currents. If A and B are two coherent
eddies in abody of water, a tracer particle spends most of its
time trapped in one of the two, but is occasionally ejected
from one eddy and entrained in the other. The equilib-
rium current is thus dominated by the velocity fields of the
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two eddies, but the reactive current highlights the smaller
filaments that connect them.

This analogy helps to interpret Fig. 5, which maps out
the equilibrium and reactive densities and currents in the
same subspace (|¥(30km)|,U(30km)) as shown in Fig.
1(c). The orange-scale color shading in Fig. 5(a) indi-
cates the steady-state density 7 (x), the same as the black
curves in the right column of Fig. 2, but now projected
onto two dimensions and mapped with a logarithmic scale.
n(x) is larger near a and b, indicating the system’s over-
all bimodality. Overlaid on 7 (x) is the equilibrium current
J(x), which is disorderly near a, but highly organized as an
“eddy” around b. This reflects the vacillation cycles in the
B — B phase seen in the time series of Fig. 2, and offers
a dynamical perspective not available from the stationary
distribution 7r(x). Each cycle consists of a slow buildup of
zonal wind driven by radiative cooling, wave enhancement
allowed by the growing PV gradient, and subsequent col-
lapse of zonal wind. Mathematically, the linearized system
near b has imaginary eigenvalues; however, since b is sta-
ble, without noise the oscillations would die out eventually.
Stochasticity is essential to maintain those circulations at
equilibrium. In a sense we can think of them as hinting
at the ghost of the limit cycle lurking beyond a Hopf bi-
furcation. A similar effect termed “self-induced stochastic
resonance” has been observed and analyzed in simple ex-
citable systems (Muratov et al. 2005), and Weiss et al.
(2020) recognized current loops, or “probability angular
momentum,” as a ubiquitous feature in climate dynamics.

The equilibrium current in between A and B is weaker,
but essential for carrying the system during the transitory
phases. In panel (a), the horizontal slice in phase space
near U(30km) = 20 m/s exhibits vector field arrows lying
almost horizontally in the (|¥[,U) plane, forming a prob-
abilistic basin boundary between two eddies. For a transi-
tion to occur, that boundary has to be ruptured, and exactly
where and how it breaks indicates a lot about the preferred
transition mechanism; this is the subject of panels (b) and
(c).

Panel (b) shows the reactive current Jap(x), overlaid
on the A — B reactive density in the background, i.e., the
orange curves in the right column of Fig. 2. Gray patches
indicate the metastable regions A and B, where reactive
density is zero by definition (modulo the projected-out di-
mensions). Whereas the trajectories in Fig. 1(c) and the
time series in Fig. 2 give us only a few noisy transition
path samples, following the reactive current through state
space allows to understand the transition dynamics at an
ensemble level. To corroborate the faithful representation
of transition pathways, and to compare with a more clas-
sical method, we have also plotted five realized transition
paths (in both directions) from the reference simulation in
blue, as well as the minimum-action pathways in cyan.

In Fig. 5(b), Jap emerges from set A with gradually in-
creasing wave amplitude and decreasing zonal wind. Fol-



10

U(30 km) (m/s)

4.0e6 1.20e7

8.0e6
|W](30 km) (m?/s)

Px{A-B}

80.0

60.0

20.0

U(30 km) (m/s)

-20.0

1.20e7

8.0e6
|W[(30 km) (m?/s)

4.0e6

Py {A-x}
1.0
(b)
>
E
o
&,
b=
4.0e6 8.0e6 1.20e7
|W[(30 km) (m?/s)

Py {B-A}
>
E
=
8,
=)

1.20e7

8.0e6
|W[(30 km) (m?/s)

4.0e6

FIG. 4. Committors and transition probabilities. First row: committors g*(x) = Px{x — B} (a), the probability of hitting B next, and
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B,and (1-g*(x))(1-q~(x)) =Px{B — A} (d), the probability of being en route from B to A. All fields are projected onto the (|¥|,U) plane

at 30 km.

lowing this current highway farther away from A, the field
weakens and then spreads out, indicating that pathways
tend to meander more widely through this stage. The cur-
rent flows to large streamfunction amplitude, and eventu-
ally extremely negative zonal wind before approaching set
B from below, generally tracking along the red crescent of
Fig. 4(a). But the current does not completely stall out when
hitting B; instead, the current loops cyclically around B,
indicating that some paths orbit the weak-zonal-wind fixed
point, perhaps several times, before approaching closely
enough to enter B. This behavior, of course, depends on
the size and shape we assigned to set B: with a smaller
radius, more cycling occurs, and with a larger radius, paths
will generally terminate sooner and cycling will become
less prevalent.

From a weather forecasting perspective, there may be
little interest in charting the evolution of an SSW after
the first dip into negative zonal wind territory, which is

why we used a different definition of A and B in Finkel
etal. (2021). In that case, transition paths end by definition
as soon as the wind reverses, and any further oscillations
are considered part of the B — B phase, not the A — B
phase. But from a dynamical systems perspective, these
oscillations are robust features of the event’s final stages,
and distinct from the following oscillations in the B — B
phase.

The cyan-colored minimum-action pathway represents
the most likely transition path in the low-noise limit (e.g.,
Freidlin and Wentzell 1970; E et al. 2004; Forgoston and
Moore 2018). The pathway solves an optimization prob-
lem, deviating as minimally as possible from the determin-
istic dynamics while still bridging the gap all the way from
A to B. These deviations from deterministic behavior rep-
resent the minimum necessary stochastic forcing required
to actuate the transition. We have computed the least action
path by minimizing the integrated magnitude of perturba-
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map (X) and Jp A (x) overlaid on g 4 (X) respectively. Cyan curves mark the minimum-action pathways in each direction, while blue curves are
sampled realized transition pathways. Gray dots are data points inside A and B, which are spheres in 75 dimensions, so some transition path

segments appear to overlap with A and B in this projection.

tions while enforcing the end constraint with a quadratic
penalty, a procedure that follows Plotkin et al. (2019) and is
described further in the supplement. As the noise strength
(i.e., stochastic forcing) shrinks to zero, we expect the re-
active current to collapse into a single streamline following
the minimum-action path. The finite-noise transition path
ensemble, however, departs significantly from it. In the
initial stages of transition in panels (c,d) of Fig. 5, the
minimum-action path tracks right down the center of the
reactive current, suggesting this feature is stable with noise.
But in the latter part of the process, the minimum-action
path seems to exaggerate the large-wave amplitude and
low-wind extremes of transition paths. The general effect
of nonzero noise is to mitigate the extreme spike in zonal
wind.

We turn now to the B — A current in Fig. 5(c), which
is very different from a reversed A — B current (another
sign of irreversible dynamics). However, there is symme-
try between the two directions. J4p dives beneath set B
in an exceptional wind collapse, and subsequently merges
smoothly from below with the equilibrium vacillation cy-
cles. After an extended stay in B, Jpa escapes out the fop
of the vacillation loop, breaking the cycle during the wave
amplification phase by climbing upward in U space ever
so slightly, to breach the “basin boundary” from below. At
this point, the vortex has reached a sufficiently strong state
to inhibit wave propagation, and radiative relaxation takes
over.

The minimum-action path from B to A begins with some
tortuous maneuvers to escape from the stable spiral b, but
upon reaching the boundary of set B it follows a simi-
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lar route as the reactive current. The path escapes from a
vacillation cycle at the top of B, during the strong-wind
phase, giving the radiative forcing a chance to pull the
vortex back into shape. But as with the A — B direction,
the minimum-action path strays significantly from the vec-
tor field streamlines, especially in the final stages with the
negative IHF anomaly: while Jp4 enters A from the right
(high |¥|), the minimum-action path enters A from below.

The minimum-action paths depend in part on choices
in the optimization strategy, as detailed in the supplement.
However, the systematic differences with reactive current
are robust with respect to the optimization parameters.
Moreover, any single pathway cannot possibly represent
the variety of paths present that the reactive current finds.

e. Visualizing transition states

In the visualization of reactive current and minimum-
action paths, we have chosen a two-dimensional space
to provide some physical insight into the transition path
mechanisms; details on this projection are provided in the
supplement and in Strahan et al. (2021). However, any two-
dimensional projection must sacrifice all other degrees of
freedom, here 73, missing interaction between dynamical
fields and altitudes which simply cannot be visualized in
this kind of two-dimensional plot. In Finkel et al. (2021),
we partially addressed this problem with sparse regression
to approximate the committor through a small number of
highly predictive physical proxies. This seems promising
for prediction—it identifies the key observations required
for a forecast—but it leaves much to be desired for detailed
physical understanding. We offer further visualizations in
this section to aggregate the higher-dimensional dependen-
cies, and to compare the transition according to TPT and
action minimization. For the remainder of the paper, we
focus on the A — B transition, the prototype for a SSW.

The minimum-action method is easy to visualize; it is
one single path, whereas TPT provides the full range of
paths. However, TPT quantities can be used to reconstruct
snapshots of “transition states” that are typical in the fol-
lowing sense. A defining property of reactive current is
constant flux across dividing surfaces: if we draw a sur-
face C in the (|¥],U) plane of Fig. 5 that encircles A
without intersecting B, and compute the total outward flux
fc Jap -ndo, the result is a constant regardless of which
surface C is chosen. That constant is the rate, or inverse
return time, which is the average number of SSW events
in a given long time period. (Here do is an area element
on C.) An expanding sequence of dividing surfaces can be
constructed to bridge the gap all the way from A to B, each
one supporting a different flux distribution with the same
integral. Stringing together the peaks of the distributions,
we can assemble a (discretized) typical path from A to B,
as well as a spread around it. This is a simpler version of the
transition tubes defined in Vanden-Eijnden (2006); we call

it the high probability flux path. It is not to be interpreted
as the path of a single event, but rather as the flow of SSW
“traffic” through a sequence of thresholds.

A natural choice of dividing surface is a level set of the
forward committor shown in 4(a), i.e., all states where the
likelihood of a SSW is equal. To represent both typical
paths and their variability at different stages through the
transition, we pick out three committor levels (0.1, 0.5,
0.9) and identify as candidates all data points (from our
finite data set) whose estimated committor is within a small
margin (0.05) of the selected level. For committor level
sets, the surface normal vector is n = Vg*/|Vg*|. At each
point on the level set, we can therefore calculate J4p5 - n,
the local contribution to the total flux (the rate) across the
surface. The points with the greatest local flux density are in
that sense most representative of the pathway through this
surface. For each committor level, we have identified all
points with flux density with at least 10% of the maximum
magnitude, giving a discrete weighted sampling of the flux
distribution on each surface. Fig. 6 shows the mean and
spread of this distribution in terms of the zonal wind and
heat flux profiles. Blue and red dashed curves represent
the fixed points a and b, the solid curves show the mean
profiles at each committor level, and the shading shows the
range between the Sth and 95th percentile (note they are
not symmetric about the mean). The supplement provides
details on how these statistics are calculated.

The progression from A to B starts off gradual and con-
strained, but in the latter stages explodes in both magnitude
and variability. The ¢* = 0.1 and ¢g* = 0.5 profiles form
tight bundles, consistent with the narrow stream of Jp
close to A, while the g* = 0.9 profiles spread out dramat-
ically, especially in terms of heat flux. Another striking
aspect is that the upper level winds remain quite close to
the radiative solution even for high committor levels, a
long way into the transition process; the collapse of upper
level wind happens very fast and very late after the vortex
has practically committed to breaking down. Comparing
the wind profiles at a forecast probability of 0.1 vs. 0.5
suggests that the key evidence of an impending SSW is
a subtle, but significant weakening of the midlevel vortex
between 20 and 40 km. There is more spread in the lower-
level winds around 10 — 20 km at the 50% point, but not a
significant difference in the mean. The key role of the mid-
level winds suggests the importance of preconditioning the
vortex (McIntyre 1982; Albers and Birner 2014). Strong
winds inhibit upward wave propagation (e.g., Charney and
Drazin 1961) and an initial weakening of the mid-level
winds allows for the abrupt burst of wave activity in the
SSW event.

In terms of the heat flux, the key evidence of an im-
pending warming event is the subtle increase in heat flux
(i.e., upward wave propagation) at lower levels, 10 km and
lower. The increase in wave propagation from the boundary
is the key precursor. The explosion of upper levels (the 0.9
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and b, respectively.

surface) comes when the event is already in progress. The
middle altitudes may be critical for this model’s precondi-
tioning, or receptivity to planetary waves propagating from
below. Preconditioning is a key concept for predictability,
and has been explored in Bancald et al. (2012) and Albers
and Birner (2014) in reanalysis data. The details of precon-
ditioning are more complex in three-dimensional resolved
models, and it may furthermore differ between split- and
displacement-type warmings.

While Fig. 6 divides the transition into stages based on
the committor, it does not indicate how long each stage
takes. To compare TPT more directly with the minimum-
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action pathway, which is parameterized by time, we choose
another set of dividing surfaces defined as level sets of the
lead time to the SSW, i.e., to reach set B:

n*(x) =Ex[t"|x — B]. (25)
This measures the progress from A to B in terms of time, as
presented in Finkel et al. (2021) as an important forecast-
ing metric. We select 15 different level sets of n* from
100 days to O days, matching the time horizon of the
minimum-action path, and compute the mean and standard
deviation wind profile as described above. Fig. 7 displays
both minimum-action path (left) and high probability flux
path (right), showing the evolution of U(30 km), U(z), and
|W(z)| profiles. The two paths are qualitatively similar, both
zonal wind profiles slowly decaying and then rapidly plum-
meting down to b. But they differ, primarily in the magni-
tude of extremal behavior: the zonal wind dips lower and
the wave magnitude rises higher in the minimum-action
path as opposed to the high probability flux path.

A vertical dashed line marks the beginning of the con-
ventional SSW event, when U(30 km) first dips below the
threshold for state a. While this event is clearly defined for
the minimum-action path, in Fig. 7(b) the high probabil-
ity flux path actually stagnates in its descent, not crossing
the threshold until the transition is almost finished. This is
not because real transition paths don’t plummet to negative
wind—Fig. 5 clearly shows that they do, both from the
current and from the observed path samples—but because
the subsequent large oscillations around set B cancel out
the negative spike, on average. The orange flux distribution
spreads out rapidly even as the mean profile flatlines, con-
firming that mean behavior belies some important variabil-
ity in the transition path ensemble. We thus put the vertical
line in the right-hand column where the 5th percentile of
zonal wind drops below a, as the minimum-action path cor-
responds most closely to the negative tail of the transition
path ensemble. This is consistent with the comparison be-
tween the minimum-action path and reactive flux in Fig. 5:
nonzero noise tends to (1) blunt the largest negative zonal
wind spikes, and (2) lead to subsequent large positive 0s-
cillations before the vortex enters B .

4. Transition path statistics and numerical benchmarks

In this section we present various statistics over the tran-
sition path ensemble, including metrics of SSW severity.
We also report numerical benchmarks to assess the accu-
racy of the DGA method.

a. Numerical method: DGA

DGA is detailed in the supplement and in previous pa-
pers (Thiede et al. 2019; Strahan et al. 2021; Finkel et al.
2021), but we briefly sketch the procedure to provide con-
text for the statistics to follow. We generate a data set by
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FiG. 7. Minimum-action paths (left) and high probability flux paths (right). The first row shows U (30 km) as a function of time, while the
second row displays the evolution of the whole zonal wind profile U (z). The third row shows the evolution of the profile of wave amplitude |¥(z)|.
The high probability flux path is defined as a sequence of maximizers of the flux distribution on level sets of the lead time to B (see text for details).
The two paths are similar, but the minimum-action path goes through larger extremes in both wind and wave amplitude.

sampling many points X, (0) from all over state space ac-
cording to some sampling measure, p, and then launch-
ing a short trajectory from each one, yielding a data set
{X, (1) : 0 <1 < Ar}N . This sampling measure, the num-
ber N =3 x 10° trajectories, and the length At = 20 days, are
key parameters of the method. The trajectories are signifi-
cantly shorter than the typical ~ 100 day duration of SSW.
As in Finkel et al. (2021), the initial conditions are resam-
pled from a long (2 103 days) control simulation to be uni-
formly distributed on the space (|¥|(30km),U(30km)).
With a more complex (expensive) model we would not be
able to rely on a control simulation to seed the initial points,

but here we focus on TPT and DGA as a proof of concept
rather than optimizing the numerical procedure.

After generating the data, we expand several unknown
“forecast functions” of interest—q™* (x), g~ (x),n" (x), 7(x)
etc, see the supplement—in basis sets informed by the data,
and then solve matrix equations for the expansion coeffi-
cients. The choice of basis is another key parameter of the
method. The entries in the matrix equations are expecta-
tions over both the initial conditions X,,(0) and the final
conditions X, (At) and are estimated by sample averaging
using our short trajectory data set. The forecast functions
then lead directly to all the other quantities presented here,



including reactive densities, currents, and the path integral
moments to be described next.

DGA is an attractive alternative to DNS because it is par-
allelizable and flexible with respect to the sampling distri-
bution . DNS, by contrast, samples state space according
to m, which is small in the transition regions between A
and B. DNS generates transition events only rarely, and
thus the transition path statistics of interest may take a long
time to converge. As DGA is a new, rapidly developing
method, rigorous error bounds are not yet available for
general systems, and certainly beyond the scope of this pa-
per. In practice, the performance of DGA depends strongly
on the specific choice of sampling measure, basis func-
tions, and lag time At. Because we have performed both
DGA and DNS on the Holton-Mass model, we can com-
pare them quantitatively, and furthermore put error bars on
DNS, as a rough validation, albeit with significant room
for improvement.

b. Forecast maps: distinguishing transition routes

With reactive densities, we describe the properties of
instantaneous configurations along transition paths. With
reactive currents, we describe the movement between suc-
cessive configurations during a transition. Here, we go one
step further and describe the properties of full, coherent
pathways as discrete objects drawn from an ensemble. We
focus on just two simple summary statistics that are physi-
cally relevant to our insights so far. The first statistic is the
transit time: how long it takes for the vortex to break down
completely. Formally, transit time is 75 — 77, where 77 is
the beginning of the path (when it leaves A) and 7% is the
end of the path (when it hits B). The second statistic is the

total heat flux, /T Tf v/T’(30km) dt: a quantification of the
size of the spikes observed in Fig. 2(c) during the A — B
SSW phase. Both quantities are random variables that dif-
fer from event to event, and we would like to distinguish
different pathways based on their transit time and total heat
flux. We can apply the same analysis to any path integral
of the form

+

[

where I is a physical observable to represent the magni-
tude, or severity, of an event.

Fig. 8(a) shows the expected transit time of all (A — B)-
transition paths passing through x,

[(X(1)) dt (26)

Ex|[t"-77]A - B|. 27

The blue regions indicate a small 7+ — 77, i.e., the fast routes
through state space between A and B. The red regions
indicate traps, where stray transition pathways encounter
delays. The fastest route generally follows the reactive cur-
rent, with a large spike in wave amplitude preceeding the
zonal wind dropoff.
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Next consider the total heat flux at 30 km. Panel (b)
shows the expected total heat flux of transition paths cross-
ing through x, while panel (c) shows the instantaneous
heat flux at 30 km as a static function of state space, viz.
Equation (9), highlighting its association with large wave
magnitude and weak zonal wind. Counterintuitively, the
low-heat flux path route passes through the high-heat flux
region of state space. To resolve this paradox, we turn back
to the reactive current J4p in Fig. 5 and note again the
presence of extra loops around set B in the final stages of
transition. A proportion of transition paths execute some
extra loops, having missed the set the first time around, and
accumulate more heat flux into the path integral. The red
interior region of large total heat flux in Fig. 8(c) is a signa-
ture of these multi-loop pathways, one of which is already
shown in the relatively brief simulation window of Figs. 1
and 2. Panel (d) draws attention to where total heat flux is
large and total time is small: i.e., the most intense events. It
appears greatest right where transition paths tend to enter
set B after the first major deceleration of the vortex, similar
to the minimum-action path shown in Fig. 5(b). This is the
sweet spot where paths reach the weak vortex state without
getting trapped in a number of cycles about B.

c. Path integral distributions

Whereas Fig. 8 shows expectations over all transition
paths passing through a given x, the same expectations—
and higher moments—can be computed for all transition
paths irrespective of their route, using DGA. While TPT
applications in chemistry have mainly focused on the mean
passage time, higher moments may be important for risk
analysis. When transition path integrals are defined to rep-
resent the severity or damage of a certain event, knowledge
of their full distribution is important for building uncer-
tainty estimates into disaster response planning. While the
Holton-Mass model is too idealized to interpret any path
integral as a concrete damage indicator, natural disasters
have clear quantifiable notions of damage that vary widely
between events. Earthquakes and wildfires, for example,
seem to follow power laws (Christensen et al. 2002; Mala-
mud et al. 2005), as do failures in some engineered systems
such as power grids (Dobson et al. 2007) and financial mar-
kets (Gabaix 2009). Recent analysis of birth-death proce-
ses in ecological models has revealed universal behavior in
fixation time distributions (Ashcroft et al. 2015; Hathcock
and Strogatz 2019, 2021).

The ability of DGA to access higher moments of dis-
tributions may help to estimate the upper echelons of risk
without having to run long, expensive simulations. Cheby-
shev’s inequality, in particular, allows us to bound tail prob-
abilities using moments. With this motivation in mind, we
have estimated moments of time and total heat flux in the
Holton-Mass model using DGA. Of course, DNS provides
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the same information given enough time, but in more ex-
pensive models we expect DGA to become more favorable.
We will present both sets of results together, simultane-
ously bolstering our scientific claims and validating the
DGA method.

The first two moments are visually assessed in Fig. 9(a),
where we have plotted the transition path duration against
the integrated heat flux for all observed transitions from
the control simulation. Cyan and red crosses indicates the
mean and +1 standard deviation envelope estimated from
DNS and DGA respectively. Note that the crosses are not
error bars on the mean, but estimates of the variances of
the transition path integral distributions. DNS and DGA
agree approximately in these first two moments, but the
distribution is plainly skewed, indicating that higher mo-
ments are necessary to fully describe it. Panels (b) and (c)
show the first three moments, normalized to the same units

by taking a k-norm,

T+

e

which have the same dimensions of [I] -
1,2,3,....

The two methods are consistent given the 95% confi-
dence interval on DNS and produce similar moment pat-
terns as a function of moment number k. The errors suf-
fered by DNS are due to poorly sampled tails in the distri-
bution, which are are rare events among rare events. The
fundamental data scarcity problem applies to the transition
path ensemble itself, and we have found the moment error
bars to decrease slowly as the DNS data set increases.

DGA is not perfect either, displaying a consistent bias
in the time moments relative to DNS, which may depend
sensitively on the definition of B. In principle, one can use

(28)

[T] for k =
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FiG. 9. Transition path integral distributions. In (a), each black dot
is a different transition path realized from the long control simulation,
and the cyan crosses mark the mean and standard deviation of the em-
pirical distribution. Red crosses mark the mean and standard deviation
computed from DGA. The lower two panels show expected transition
path integral moments 1-3, both of duration and total heat flux, and both
from DGA and DNS.

these moments to describe the distribution’s shape in more
detail, e.g., with skew and kurtosis. At this stage of our
method, these higher-order statistics are not yet reliable
to draw confident conclusions. We present these results to
fully document the methodology and to highlight areas in
need of further improvements. While DNS accuracy is fun-
damentally limited by the number of sampled paths, DGA
has the potential for improvement through the basis sets
and the sampling strategy. As these avenues are explored
in the future, DGA may become increasingly advantageous
relative to DNS as one becomes more interested in the tails
of the path integral distribution.

Fig. 9(a) also makes the important point that the two path
integrals—total time and total heat flux—are not perfectly
correlated; that is, transitions with large heat flux aren’t
necessarily so just because they have longer duration, and
likewise very long-lasting transition paths can maintain a
fairly low total heat flux. The DNS distribution of A —
B path integrals appears to have two branches, one with
no correlation between time and heat flux and the other
with high correlation. Hence the two path integrals are
truly independent pieces of information. Here, we can only
see this because of DNS, but in principle DGA can also
estimate the joint moments of time and heat flux.
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5. Conclusion

Extreme weather events are central to the modern chal-
lenge of climate modeling. As the impacts of flooding, heat
waves, cold spells, and other natural disasters become in-
creasingly stark, the scientific community is endeavoring to
better capture these events, as well as average behavior, in
numerical models. While many exciting techniques are be-
ing developed to simulate and diagnose rare events, there is
an overall lack of standard language and benchmarks to do
s0, due to the sheer variety of extreme-weather phenomena
under study. Closely coupled to this conceptual problem is
the computational problem that rare events take a long time
to appear and hence a very long time to produce a signif-
icant statistical distribution, whether in an observational
record or in a simulation.

We have advocated two major ideas to advance an or-
ganized approach to extreme weather modeling. First, as
a conceptual demonstration, we have presented a detailed
transition path theory (TPT) analysis of a prototypical ex-
treme event, sudden stratospheric warmings in the Holton-
Mass model. TPT provides a set of summary statistics that
encapsulate important features of rare events, including
frequency, precursors, and various severity metrics. Reac-
tive densities and reactive currents tell us how the system
evolves through state space to a SSW event, as well as mo-
mentum and heat transfers along the way. The minimum-
action method provides a useful but limited point of com-
parison, as it provides no information about the variablity
of transitions. We have furthermore extended the TPT
framework to calculate statistics of the total time elapsed
and integrated heat flux during a vortex breakdown event,
both for the entire path ensemble and for different kinds of
paths through state space. Comparing reactive current with
maps of various forecasts and aftcasts, we can infer many
qualitative properties of the path ensemble, especially what
makes transition paths unique relative to “everyday” dy-
namics.

Second, we have demonstrated the numerical ability to
use short simulations to estimate rare event statistics, which
has great potential as a parallelizable alternative to run-
ning long simulations. This was demonstrated in Finkel
et al. (2021) for the narrow goal of forecasting sudden
stratospheric warming events in the Holton-Mass model.
In the current paper we have used the same computational
method to ask more intricate statistical questions about the
evolution of SSW from start to finish.

Our work is an early application of TPT to atmospheric
science, where we believe it holds potential as a frame-
work for forecasting, risk analysis, and uncertainty quan-
tification. Thus far, it has been used mainly to analyze
protein folding in molecular dynamics, but is becoming
recognized as informative for diverse fields such as social
science (Helfmann et al. 2021), as well as ocean and atmo-
spheric science (Finkel et al. 2020; Helfmann et al. 2020;
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Lucente et al. 2021). We stress that TPT and DGA are spe-
cialized to describe certain aspects of rare events, but not all
aspects. Our method targets specific integral quantities of
the form (26), but nonlinear functionals may also be worth
computing. Furthermore, successive rare events may carry
long-time correlations, which we have not quantified. For
example, a large earthquake might release enough tectonic
stress to make the next one less severe. Our approach will
require further extensions to address such issues.

Significant challenges remain for deploying DGA at
scale to state-of-the-art climate models. The numerical
pipeline used in this paper is far from optimal, as we
have focused on communicating the basic deliverables of
TPT. One important limitation is the data generation step.
We used a long ergodic trajectory to sample the attractor,
which served the double purpose of seeding initial data
points for short trajectories (i.e., defining the sampling
measure p) and providing a ground truth for validating
the accuracy of DGA. In a real application where DGA
is advantageous, this dataset would not be available, and
more advanced sampling methods would be required. One
promising strategy is splitting: starting from initial points
in A and B, simulate forward for a short time, and replicate
trajectories that explore new regions of state space. Effi-
cient sampling is an active research area, with recent work
including Hoffman et al. (2006b); Weare (2009); Bouchet
et al. (2011, 2014); Vanden-Eijnden and Weare (2013);
Chen et al. (2014); Yasuda et al. (2017); Farazmand and
Sapsis (2017); Dematteis et al. (2018); Mohamad and Sap-
sis (2018); Dematteis et al. (2019); Webber et al. (2019);
Bouchet et al. (2019a,b); Plotkin et al. (2019); Simonnet
et al. (2020); Ragone and Bouchet (2020); Sapsis (2021);
Abbot et al. (2021). We will draw upon these developing
methods when scaling DGA up to more realistic models
and data. In the meantime, our calculations here serve as a
conceptual and numerical foundation for holistic rare event
description in atmospheric dynamics.
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