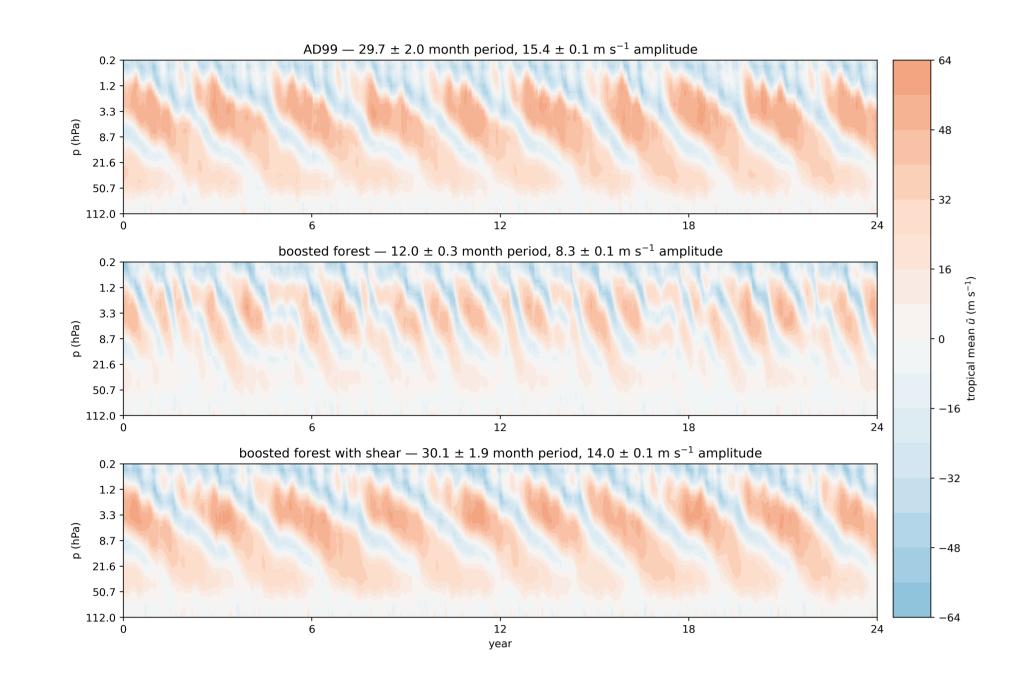
A 1-D QBO model testbed for data-driven gravity wave parameterization: Generalization and calibration

Ofer Shamir¹, Zihan Shao¹, L. Minah Yang¹, David S. Connelly¹, Steven Hardiman², Edwin P. Gerber¹

¹Courant Institute of Mathematical Sciences, New York University, New York, New York. ²Met Office Hadley Centre, Met Office, FitzRoy Road, Exeter EX1 3PB, UK

(1) Motivation

- A key metric of gravity wave (GW) parameterization tuning is the fidelity of the simulated Quasi-Biennial Oscillation (QBO).
- Simulated QBOs in an intermediate complexity atmospheric model (MiMA), forced with emulators of physics-based GW parameterization (AD99¹), are highly variable.



- Sensitivity analysis of the QBO response to external forces (e.g., CO₂) and GW parameters is computationally taxing.
- We explore the generalization and calibration of data-driven GW parameterization in a 1D QBO model testbed.

(2) Model and stochastic wave forcing

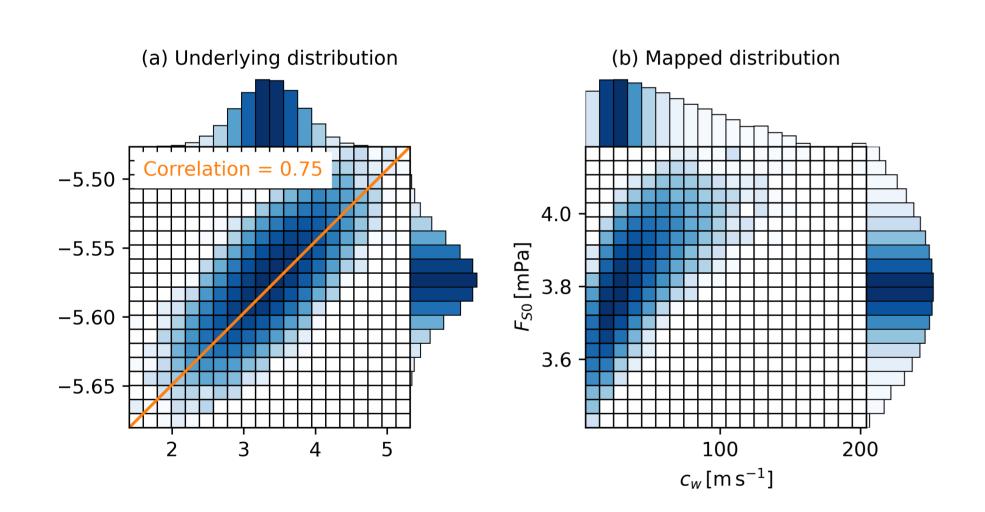
• A hybrid of the 1D QBO models studied in HL72² and P77³, forced by a collection of monochromatic waves packets:

$$\frac{\partial u}{\partial t} + w \frac{\partial u}{\partial z} - \kappa \frac{\partial^2 u}{\partial z^2} = -\frac{1}{\rho} \frac{\partial}{\partial z} \sum_{i} A_i \exp \left\{ -\int_{z=z_1}^{z} \frac{\alpha(z')}{k_i (u - c_i)^2} dz' \right\}$$

• The wave spectrum follows AD991:

$$A(c) \propto \operatorname{sgn}(c) \exp \left[-\ln 2\left(\frac{c}{c_w}\right)^2\right]$$

• We add stochasticity to the wave forcing: at each time step the total source flux $F_{S0} = \sum_{i} |A_{i}|$ and spectral width c_{w} are drawn from a bi-variate log-normal distribution.

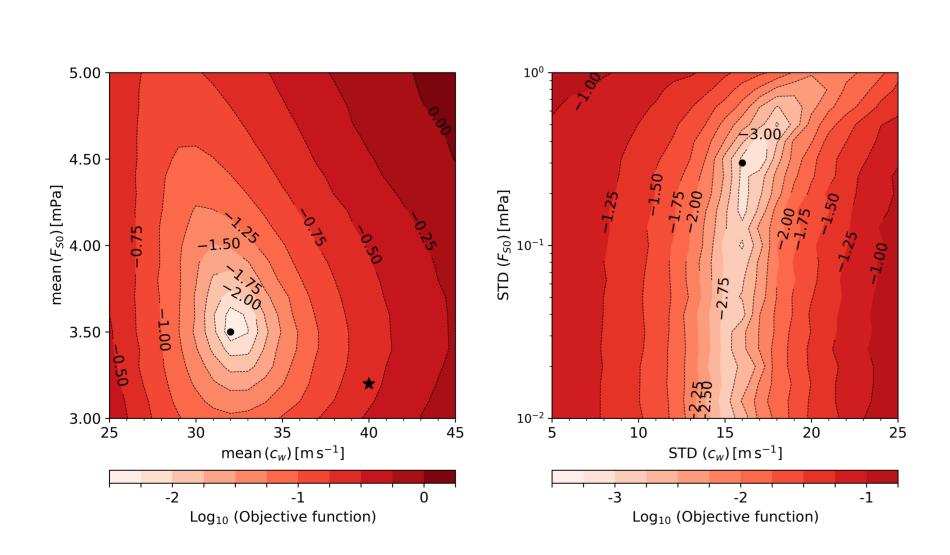


• Physically, F_{S0} (related to precipitation²) and c_w (related to convection depth) are positively correlated.

"Optimal" / "observed" wave forcing

 The control GW spectrum corresponds to the unique combination of wave flux and spectral width that yields the "observed" QBO amplitude (σ) and period (τ) according to (*).

$$\frac{[\sigma(25\,km)-33\,m/s]^2}{[33\,m/s]^2} + \frac{[\sigma(20\,km)-19\,m/s]^2}{[19\,m/s]^2} + \frac{[\tau(25\,km)-28\,months]^2}{[28\,months]^2} \quad (*)$$

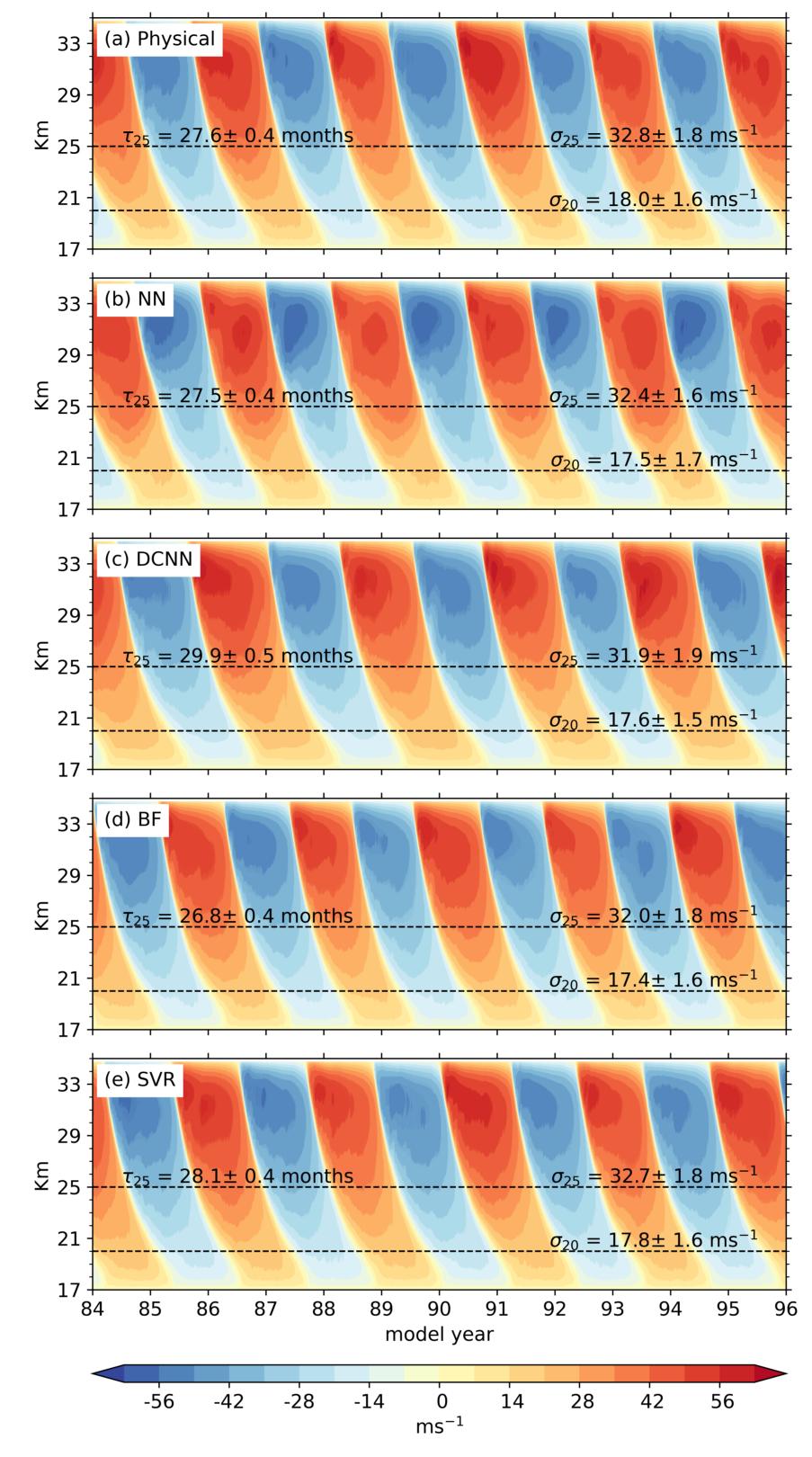


• The mean wave flux and spectral width required to capture the "observed" QBO in the 1D model are remarkably similar to those found in higher complexity models.

(4) Emulation

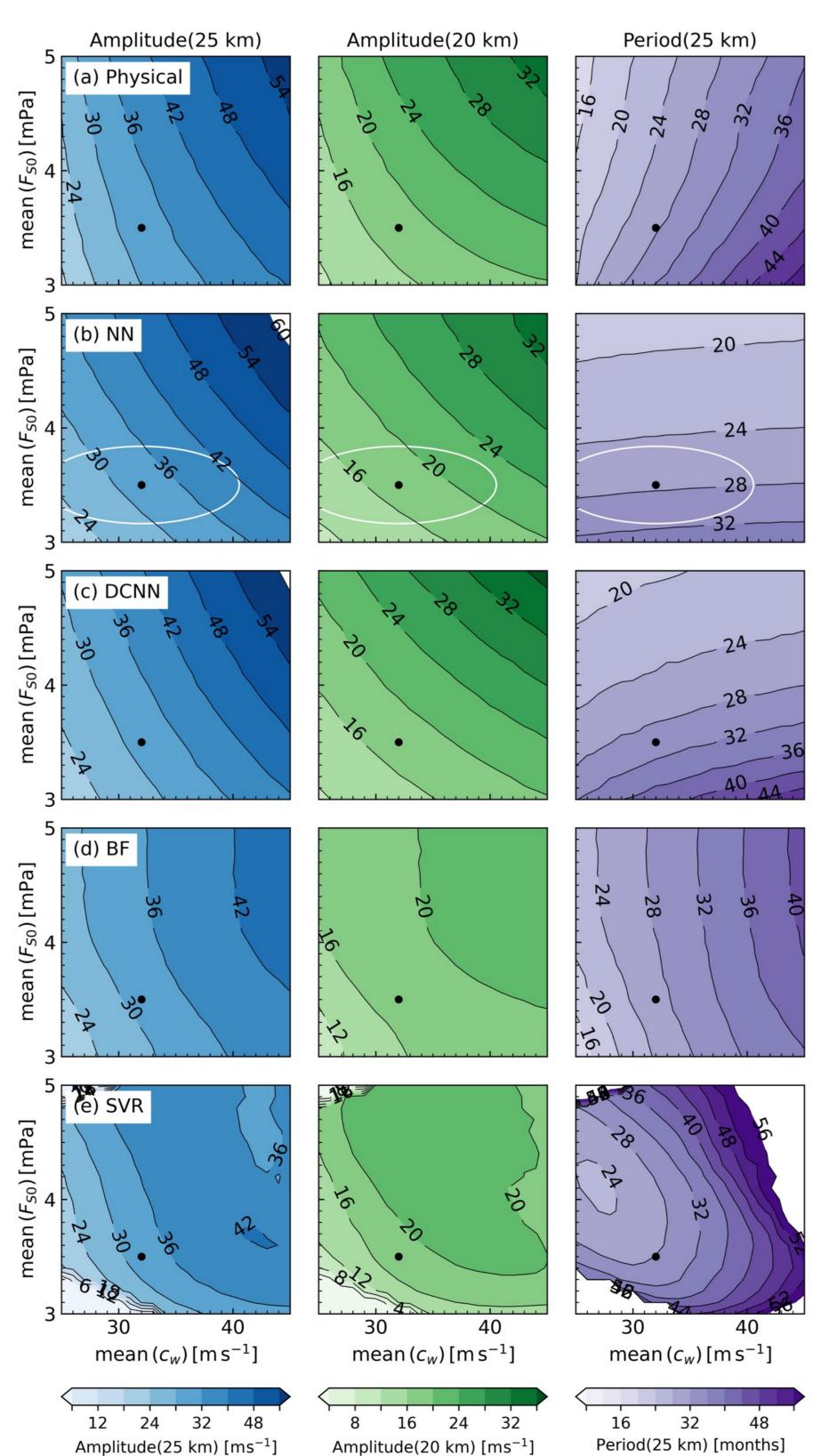
 We train different emulators using the "optimal" GW flux distribution for the training data.

$$-\frac{1}{\rho}\frac{\partial}{\partial z}\sum_{i}A_{i}\exp\left\{-\int_{z=z_{1}}^{z}\frac{\alpha(z')N}{k_{i}(u-c_{i})^{2}}dz'\right\} \rightarrow \text{Emulator}(u,F_{S0},c_{w})$$

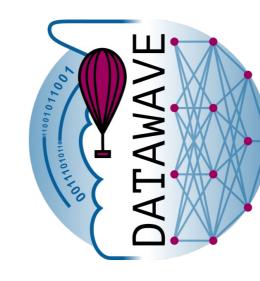


(5) Generalization

• How well do emulators trained on a single source distribution generalize to nearby source distributions?



• The emulators capture the qualitative sensitivity of the QBO's <u>amplitude</u> to changes in F_{S0} and c_w , but <u>struggle</u> to capture the qualitative sensitivity of the QBO's period.

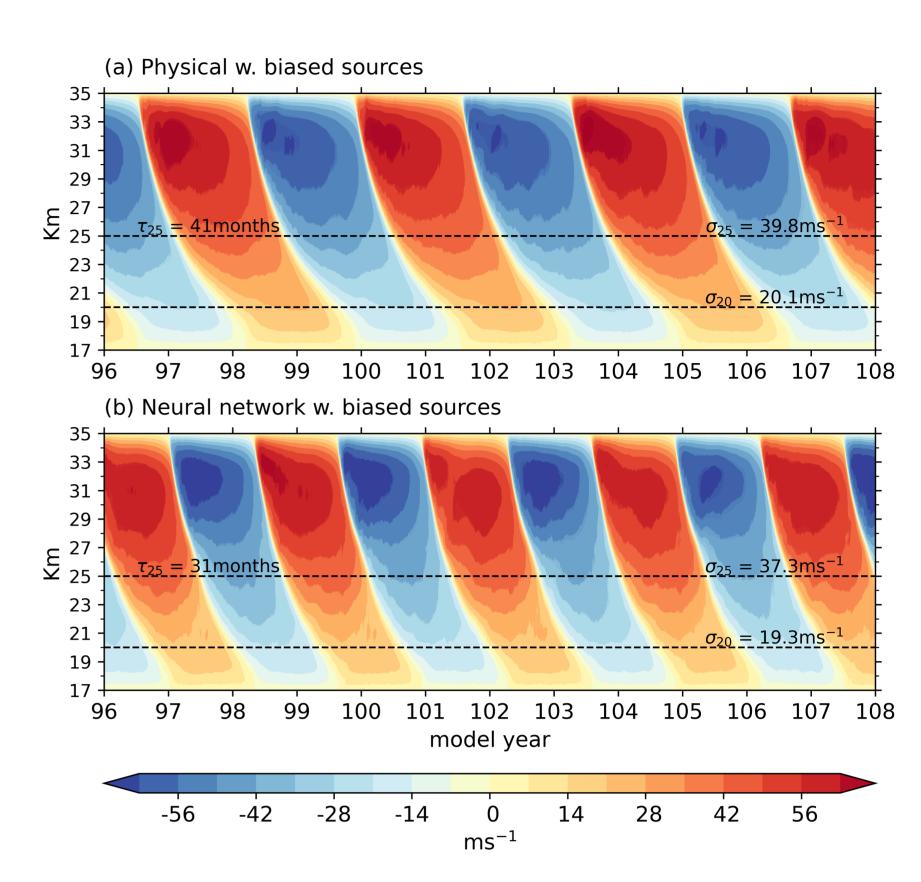


NYU COURANT SCHMIDT FUTURES

(6) Calibration

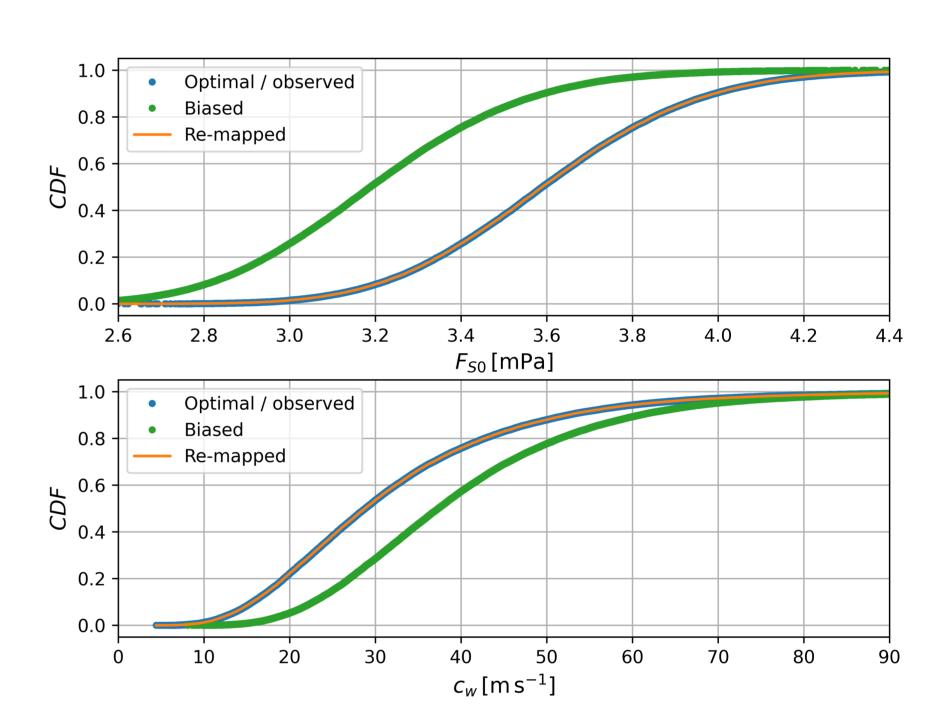
Correspondence: os584@nyu.edu

- Our emulators were trained on the optimal/observed source distribution, but a model's source distribution can be biased.
- Consider the emulated solution forced by the biased source distribution indicated by black * in box (3):



- How can we adjust the data-driven GW parameterization to yield the desired QBO statistics as in (*)?
- One approach is to re-map the biased source distribution to the optimal source distribution:

$$\{F_{S0}, c_w\} \rightarrow CDF_{optimal}^{-1}(CDF_{Biased}(\{F_{S0}, c_w\}))$$



Yielding the desired QBO period and amplitudes:



(7) Conclusions

- Machine learning methods show promise in replicating a physics based GWP, yielding stable, accurate simulations when coupled under the current climatological conditions.
- Our results demonstrate the challenge of generalizing to out of sample data, a major challenge of data-driven methods.
- Training on more complex data, having an annual cycle in w, does not improve our emulators' ability to generalize.
- If our emulators struggle to capture the sensitivity of the QBO's period to changes in the GW spectrum of a known physicsbased parameterization, how well can we trust data-driven methods trained on observation to capture this sensitivity?

References

¹Alexander, M. J., & Dunkerton, T. J. (1999). A spectral parameterization of mean-flow forcing due to breaking gravity waves. Journal of the Atmospheric Sciences, 56(24), 4167-4182.

²Holton, J. R., & Lindzen, R. S. (1972). An updated theory for the quasi-biennial cycle of the tropical

stratosphere. Journal of Atmospheric Sciences, 29(6), 1076-1080 ³Plumb, R. A. (1977). The interaction of two internal waves with the mean flow: Implications for the theory of the

quasi-biennial oscillation. *Journal of Atmospheric Sciences*, 34(12), 1847-1858.

⁴Garfinkel, C. I., Gerber, E. P., Shamir, O., Rao, J., Jucker, M., White, I., & Paldor, N. (2022). A QBO Cookbook: Sensitivity of the Quasi-Biennial Oscillation to Resolution, Resolved Waves, and Parameterized Gravity Waves. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002568.