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Two key challenges in the development of data-driven grav-
ity wave parameterizations are generalization, how to en-
sure that a data-driven scheme trained on present-day cli-
mate will continue to work in a new climate regime, and
calibration, how to account for biases in the “host” climate
model. Both problems fundamentally depended on the re-
sponse to out-of-sample inputs, compared to the training
dataset, and are often conflicting. The ability to general-
ize to new climate regimes often goes hand in hand with
sensitivity to model biases. To probe these challenges, we
employ a 1D Quasi-Biennial Oscillation (QBO) model with
a stochastic source term that represents convectively gen-
erated gravity waves in the Tropics with randomly varying
strengths and spectra. Weemploy an array ofmachine learn-
ingmodels consisting of a fully connected feed-forward neu-
ral network, a dilated convolutional neural network, an encoder-
decoder, a boosted forest, and a support vector regression
model. Our results demonstrate that data-driven schemes
trained on “observations” can be critically sensitive tomodel

Abbreviations: QBO, quasi-biennial oscillation; GW, gravity waves; (C)NN, (convolutional) neural network; ED, encoder-decoder; BF,
boosted forest; SVR, support vector regression.
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biases in the wave sources. While able to accurately emu-
late the stochastic source term on which they were trained,
all of our schemes fail to fully simulate the expected QBO
period or amplitude, even with the slightest perturbation
to the wave sources. The main takeaway is that some mea-
sures will always be required to ensure the proper response
to climate change and to account for model biases. We ex-
amine one approach based on the ideas of optimal trans-
port, where thewave sources in themodel are first re-mapped
to the observed one before applying the data-driven scheme.
This approach is agnostic to the data-driven method and
guarantees that themodel adheres to the observational con-
straints, making sure the model yields the right results for
the right reasons.
K E YWORD S
gravity waves, sub-grid scale parameterizations, machine learning,
data-driven, quasi-biennial oscillation
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1 | INTRODUCTION
A practical problem concerning the development of data-driven parameterizations of sub-grid scale processes is the
“graft-versus-host” problem, where a data-driven scheme may be incompatible with its “host”, the large scale model,
due to model biases and non-linear feedbacks between the resolved and parameterized scales. In the absence of
sufficient observational constraints, traditional (physics-based) schemes are tuned on a per-host basis to overcome
model biases and yield desirable results. Yet, with data-driven schemes, one does not have this luxury. Aside from
technical difficulties associated with the fact that the tunable parameters in such schemes are only latently related
to the physical parameters, tuning an observationally constrained scheme works against its purpose, to faithfully
represent the missing process. To the extent that the training dataset does, indeed, represent the observed conditions,
the resulting data-driven scheme ought to be changed as little as possible.

In the present work, we probe the graft-versus-host problem in the context of data-driven gravity wave (GW)
parameterizations. The scenario we envisage is one where a data-driven model is trained on observations (or high-
resolution model simulations) to “learn” a parameterization of the form “GW drag = GW drag(flow, GW sources)”. This
parameterization is then transplanted into an operational climate model which will almost certainly exhibit different
(biased) wave sources. For convective GW in the Tropics, this is partly due to the representation of convection in the
model, and partly due to the fact that the GW sources are themselves dependent on the resolved flow, making them
susceptible to model biases. For the procedure to succeed, the wave sources in the host model must be within the
set of observations used for training, or the data-driven scheme must generalize out-of-set. Else, even a “healthy”
but incompatible parameterization could lead to “unhealthy” simulations, for example an unrealistic quasi-biennial
oscillation (QBO).

The QBO is the dominant mode of variability in the tropical stratosphere, consisting of downwelling shear zones
of alternating easterly andwesterlywindswith a period of about 28months (Baldwin et al., 2001). It was first observed
in the mid-1950s and early 1960s (Reed et al., 1961; Ebdon, 1960; Ebdon and Veryard, 1961) and was explained the-
oretically soon after, in the late 1960s and early 1970s (Lindzen and Holton, 1968; Holton and Lindzen, 1972), by
means of a wave-mean flow interaction driven by upward propagating waves. As such, the QBO in general circulation
models is particularly sensitive to the simulated waves’ spectrum and, ultimately, their momentum deposition. Due
to limited (vertical) resolution, insufficient for resolving the waves’ generation, upward propagation, and the ensuing
wave-mean flow interactions, simulations of the QBO as an emergent phenomenon remained a challenging task for
decades, until the late 1990s early 2000s. Still, despite constant improvements in the representation of the (resolved)
tropical wave spectrum, and in lieu of infeasible vertical resolutions, present-day global climate models (GCMs) gener-
ally rely on the addition of parameterized waves to obtain realistic QBOs (Geller et al., 2016; Holt et al., 2022; Richter
et al., 2014, 2020). All but one of the models participating in the QBO-initiative (QBOi) required parameterized GW
to exhibit a QBO, and the majority of the wave forcing above the QBO base in those models was attributed to the
parameterized waves (Bushell et al., 2022). Moreover, in practice, given limited observational constraints, the GW
schemes in those models were likely tuned to yield realistic QBOs.

In addition to traditional GW schemes, the QBO has recently been used as a key metric for assessing data-driven
schemes. Espinosa et al. (2022) and Connelly (??) used neural networks and random forests to emulate the Alexander
and Dunkerton (1999, henceforth AD99) GW scheme in theModel of idealizedMoist Atmosphere (MiMA, Jucker and
Gerber, 2017; Garfinkel et al., 2020). Mansfield and Sheshadri (2022) have also used Gaussian processes to emulate
the AD99 scheme in MiMA en route to quantifying the uncertainties associated with the GWs’ sources. Yang (??)
used encoder-decoders to emulate the AD99 inMiMA en route to developing optimal (re-) sampling strategies. Finally,
Hardiman et al. (2023) used convolutional neural network for emulating theWarner andMcIntyreGWscheme (Warner
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and McIntyre, 1999, 2001) in the Met Office HadGEM3-GA8.0 climate model (in an atmosphere only configuration),
while comparing different inputs. These studies have all considered the fidelity of the QBO (among other criteria)
to assess their emulators’ “online” performances, i.e. when coupled to the climate model in place of the original
(physics-based) scheme. While demonstrating the feasibility of emulating physics-based GW schemes, they also raise
questions about the implementation of purely data-driven ones.

To tackle the graft-versus-host challenge in a controlled environment, remove climate model complexities, and
facilitate the development of data-driven GW parameterizations, we employ a 1D QBO model based on the classic
model in Lindzen and Holton (1968), Holton and Lindzen (1972), and Plumb (1977). Aside from explaining the govern-
ing mechanism of the QBO itself, this model has proven to be a useful abstraction for explaining other properties of
the QBO. For example, the formation of the buffer zone below the QBO base (Match and Fueglistaler, 2020), and the
QBO disruption triggering mechanism (Match and Fueglistaler, 2021). In the present work, we add a stochastic source
term to the model, mimicking convectively generated gravity waves in the Tropics with randomly varying strengths
and phase speeds.

In addition to better representing the relevant physical scenario, this setup enables us to examine the sensitivity
of the QBO to the source spectrum parameters, namely the source flux and spectral width. This allows us to explore
two related questions. First, in a climate change context, how well can data-driven scheme trained on today’s climate
generalize to a perturbed climate (i.e., a warmer world)? Second, can a data-driven scheme trained on observations
be calibrated to yield the correct macroscopic behavior, i.e., the “righ” QBO, when grafted into a host climate model
with biased GW sources?

We implement an array of machine learning (ML) models consisting of a neural network (NN), a convolutional
neural network (CNN), an encoder-decoder (ED), a boosted random forest (BF), and a support vector regression (SVR)
model. While able to “learn” the GW drags corresponding to the GW source distribution on which they were trained,
they all fail to fully capture the sensitivity of the QBO to perturbations in the source distribution, i.e. fail to generalize
to new climate conditions. In addition, a data-driven scheme trained on observation leads to a biased simulation of
the QBO when fed perturbed GW sources, i.e., when grafted into the host. A key conclusion is the fact that some
remedy to this problem will always be required. In the present work, we suggest a preconditioning step based on the
ideas of optimal transport, where the biased source distribution is first re-mapped back to the “observed” one before
being fed into the data-driven model. Aside from guaranteeing that the graft and host are compatible, the advantages
of this approach are that it is agnostic to the data-driven method, and that it guarantees that the model adheres to
the observational constraints, and so the model yields the right results for the right reasons.

We start with a short description of the physical model, including our modifications and the control experiment,
in sections 2 and 2.1, respectively. In preparation for studying our envisaged scenario with data-driven methods, we
first examine, in section 2.2, the sensitivity of the QBO to changes in the GW sources in the physical model. The data-
driven models are presented in section 3. Their results on the control experiment in section 4.1 and their sensitivity
to changes in the GW sources in section 4.2. Our suggested remedy for a model with biased forcing parameters is
presented in section 4.3.

2 | THE PHYSICAL MODEL: A STOCHASTICALLY DRIVEN 1D QBO
The 1D QBO model of the present work is a hybrid of the models introduced in Holton and Lindzen (1972) and
Plumb (1977), coupled with a stochastic source term to mimic randomly generated GW. The model equation consists
of an advection-diffusion equation for the zonal mean zonal wind (u ) with a source term (S ) due to GW momentum
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F IGURE 1 The gravity wave sources. At each time step the total source flux FS0 and spectral width cw are
drawn from one of three bivariate log-normal distributions: (a) The control distribution, obtained as described in
section 2.1 and representing the “observed” distribution. (b) The effective distribution in the “host” model, which
represents model biases or climate change. (c) A hypothetical distribution used to test the learning sensitivity to the
correlation (same as the control distribution, but with no correlation). The distribution parameters are given in table
1 of Appendix B. (d-f) Three sample wave packets drawn from the control distribution in (a), with (d) FS0 = 3.5 mPa
and cw = 32 m s-1, (e) FS0 = 4.0 mPa and cw = 32 m s-1, and (f) FS0 = 4.0 mPa and cw = 70 m s-1, also indicated by
red squares in (a). The resulting gravity wave drags are shown in figure 5.

deposition:
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where t is time, z is the vertical coordinate,w = w (t , z ) is the (potentially) time and height dependent residual vertical
wind, and κ is a constant diffusion coefficient. The source term on the RHS originates from the divergence of upward
zonal momentum fluxes, and, as such, needs to be further parameterized in terms of the zonal wind. For upward
propagating Kelvin (-like) waves in a slowly varying zonal flow, the resulting forcing due to a sum of monochromatic
waves is (Lindzen, 1971)
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∂
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where ρ (z ) is the density, Bn are the wave-amplitudes, kn are the wavenumbers, cn are the phase speeds, N is the
Brunt-Väisälä frequency, and α (z ) is the wave dissipation.

In general, the wave amplitudes can be chosen independently of the waves’ phase speeds, provided only that
sgn(Bn ) = sgn(cn ) so as to guarantee that westerly (easterly) waves carry westerly (easterly) momentum upward. A
more physically plausible assumption in the presence of many waves is that of a continuous spectrum. In the present
work, we assume a Gaussian wave spectrum similar to one used in Alexander and Dunkerton (1999), namely

B (c ) ∝ sgn(c ) exp
[
− ln 2

(
c

cw

)2]
, (3)

where cw is the spectral half width.
Aside from the introduction of a continuous wave spectrum, the key distinction between our 1D QBO model

and its predecessors in Holton and Lindzen (1972) and Plumb (1977) is the addition of stochasticity to the wave
forcing. At each time step, the total (absolute) source flux FS0 = ρ0

∑
n |Bn | and spectral width cw are drawn from

a bivariate log-normal distribution, with the proportionality coefficient in (3) determined by FS0. Physically, one can
think of convectively generated gravity waves in the Tropics having randomly varying strengths and spectra, withmore
intense convection causing stronger fluxes, and deeper convection exciting faster waves, and hence broader spectra
(Alexander et al., 2021). The bivariate log-normal distribution is a minimal distribution, having just 5 parameters,
capable of describing the above physical picture, while also guaranteeing that FS0 and cw are strictly positive.

Figure 1 shows the GW sources in the stochastic model, including three wave source distributions (a-c), and the
spectra of 3 randomly sampled wave packets (e-f) from the observed distribution in (a). The control distribution (a) was
chosen to produce the “observed” amplitude and period of the QBO, as described in the next section. As FS0 relates
to the square of the total latent heating (or total precipitation) and cw to the depth of convection, we chose them to be
positively correlated. The perturbed distribution (b) can be viewed as the forcing under a climate perturbation (here,
stronger and slightly deeper convection), or as a host model with a biased source distribution. Finally, (c) illustrates a
hypothetical distribution with no correlation between FS0 and cw , used to test the sensitivity of data-driven models
to the correlation between the two.

The resulting QBO in response to the control and perturbed wave forcing is shown in panels (a) and (h) of figure
2, respectively. The control simulation nearly matches the observed QBO by construction, while our “warmer world”
exhibits a slower, but more intense QBO. (To be clear, we have not modified any other model parameter in the per-
turbed run, e.g., a change in the vertical advection w , which would also impact the QBO.) Aside from the internal
variability, the main notable difference from the classic model is the replacement of the critical level mechanism by
a filtering mechanism, where the low phase speed waves break first as the wind amplifies. This is the result of using
more than 2 waves in the present model, not the added stochasticity. Thus, our model maintains the essential physics
of the classic model but allows us to link the above forcing to variability in the intensity and depth of convection, as
in more advanced GW parameterizations (e.g., Beres et al., 2004).

2.1 | Control Experiment: The “Observed” QBO in our 1D Model
Traditional, physics-based, GW schemes are often tuned to yield the observed/realistic QBO. Among the first param-
eters tuned are those associated with the GW sources. For convective GW in the Tropics, this is partly due to the
representation of convection in the model, and partly due to the fact that the GW sources are themselves dependent
on the resolved flow, making them susceptible to model biases. Accordingly, our experimental parameters consist of
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the mean source flux F̄S0 and spectral width c̄w , with the control experiment defined by the combination of the two
that yields the amplitude and period of the “observed” QBO, defined here by minimizing:

[σ (25 km) − 33 ms−1 ]2
[33 ms−1 ]2 + (4)

[σ (20 km) − 18 ms−1 ]2
[18 ms−1 ]2 +

[τ (25 km) − 28 months]2
[28 months]2 ,

where σ denotes the QBO amplitude in ms-1, and τ the QBO period in months. Following Garfinkel et al. (2022), the
QBO amplitude is evaluated in the mid- (z = 25 km) and low (z = 20 km) stratosphere by means of the zonal wind
standard deviation, and the QBO period is evaluated in the mid-stratosphere by means of the dominant Fourier mode.
While this choice of vertical levels is arbitrary, the results are insensitive to variations, provided one avoids getting
too close to the lower boundary at z = 17 km, where the winds are held fixed. The incorporation of the lower level
amplitude helps narrow down the optimum but is not essential. The existence of a well-defined dominant Fourier
mode in our simulations is confirmed in figure 9 of the supplementary material.

Figure 3 shows the resulting (log-scaled) objective in (4) as a function of the mean source flux and spectral width.
The experimental range (3 ≤ F̄S0 ≤ 5mPa, 25 ≤ c̄w ≤ 45m s-1) was chosen by trial and error to be as large as possible
whilemaintaining numerical stability, ameaningful QBO (exhibiting descending shear zones), and a “not too long”QBO
period (up to 56 months). Reassuringly, this range covers the main portion of the corresponding parameter space in
Garfinkel et al. (2022) (1.3 ≤ F̄S0 ≤ 6.3mPa, 5 ≤ c̄w ≤ 45m s-1) who studied theQBO’s sensitivity to these parameters
in an intermediate complexity Model of an idealized Moist Atmosphere (MiMA). Within the sampled resolution, the
optimum is located around F̄S0 = 3.5mPa and c̄w = 32ms-1, denoted by a black dot. The simulated QBO at this point,
which serves as our control experiment, is shown in figure 2(a) for the last 6 years of a 108 year-long simulation. The
remaining physical model parameters used throughout this work are listed in Table 1 of Appendix B.

2.2 | Perturbation Experiments: Sensitivity to the Source Spectrum
Having identified the optimal source distribution (the one leading to the observed QBO amplitude and period) we
now examine the sensitivity of the solutions to changes in the mean source flux F̄S0 and spectral width c̄w . These
two parameters correspond to primary sources of uncertainty in GCMs, total precipitation and depth of convection,
respectively, and constitute our key experimental parameters.

First, compare the perturbed QBO in figure 2(h), corresponding to a source distribution with (F̄S0 = 4.5 mPa,
c̄w = 40 m s-1), with the “observed” one in figure 2(a), corresponding to a source distribution with (F̄S0 = 3.5 mPa,
c̄w = 32m s-1). Increasing the mean source flux and spectral width results, in this case, in a slower and stronger QBO.
The period increases from 27.6 ± 0.5 months to 32.4 ± 0.5 months. The high-level amplitude, for example, increases
from 33 ± 4 m s-1 to 49 ± 5 m s-1.

Next, in order to examine the sensitivity to changes in the mean source flux and spectral width in more details
we integrate the model for each combination of F̄S0 and c̄w in our experimental range for 108 years and calculate
the amplitude and period after 12 years of “spinup”. Figure 4(a) shows the resulting high-level amplitude (left, blue
shadings), low-level amplitude (center, green shading), and period (right, purple shading) in the physical model, as
functions of c̄w (abscissa) and F̄S0 (ordinate). The control distribution is indicated by a black dot, and the perturbed
one by a black star. Indeed, increasing both F̄S0 and c̄w results in a slower and strongerQBO.More accurately, however,
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increasing c̄w while holding F̄S0 fixed leads to stronger QBO amplitudes and longer QBO periods, whereas increasing
the source flux F̄S0 while holding c̄w fixed leads to stronger amplitudes but shorter periods.

The sensitivities of the QBO amplitude and period in our stochastic model are consistent with those predicted
by the classic model in Holton and Lindzen (1972) and Plumb (1977). As in the classic model, distancing the critical
levels (increasing c̄w ) increases the wind amplitudes and lengthens the time taken for the winds above the shear zone
to dissipate, while increasing the waves’ amplitude (increasing F̄S0) shortens the time taken for the shear zones to
descend and form in the first place. Unlike Holton and Lindzen (1972) and Plumb (1977), the presence of more than
2 waves results in a wave filtering mechanism, instead of the critical levels mechanism, so the effect of increasing F̄S0
does not saturate.

The QBO amplitude sensitivity in our stochastic 1D model is also qualitatively consistent with that found in
Garfinkel et al. (2022) using MiMA, but is quantitatively more sensitive. For the same range of source fluxes and spec-
tral widths, the total amplitude variation found in Garfinkel et al. (2022) was about 30-50%, compared to 100-250%
in the present work. This is to be expected, at the very least considering the fact that the resolved and parameterized
waves in QBOi models have comparable contributions (Bushell et al., 2022). The 1D model is also more sensitive in
terms of the QBO period. Garfinkel et al. (2022) found little to no change in the QBO period over the range of source
fluxes and spectral widths considered here. While we cannot expect a more quantitative agreement, it is worthwhile
mentioning that the control values (FS0 = 3.5mPa, cw = 32m s-1) are remarkably close to those used in Garfinkel et al.
(2022) (FS0 = 4.3 mPa, cw = 35 m s-1).

3 | DATA-DRIVEN MODELS
Recall the envisaged scenario: a data-driven GW parameterization is trained on observed GW drags, as well as some
proxies of the GW sources, to yield a relation of the form “GW drag = GW drag(flow, GW sources)”, and this parame-
terization is then implemented in an operational GCM having perturbed (biased) sources. For convective GW in the
Tropics, this is partly due to the representation of convection in the model, and partly due to the fact that the GW
sources are themselves dependent on the resolved flow, making them susceptible to model biases. The question is
then, how will a data-driven model trained on a certain distribution fare when fed a perturbed one, and how will it
respond to changes in the sources under climate perturbations?

The learning task at hand is a supervised regression task consisting of finding a function, f : [u, FS0, cw ] →
S , that best fits the given data samples { [u, FS0, cw ]i , Si }

Nsamp
i=1

. In other words, our inputs, or features, consist of
the zonal wind, source flux, and spectral width, and the outputs, or labels, consist of the resulting wave drag. The
samples correspond to different times, which are not necessarily sequentially ordered during training. Our training
dataset, shown in figure 5, consists of 96 years of daily samples, after 12 years of spinup, simulated using the control
parameters described in 2.1, and representing the “observed” record.

In order to account for the zero wind (Dirichlet) boundary conditions imposed in the physical model, we found
it easiest to exclude the boundaries during training. After removing the top and bottom boundaries, [u, FS0, cw ] ∈
Ò(Nsamp )x (N lev ) and S ∈ Ò(Nsamp )x (N lev−2) .

We consider the following 6 models:

(i) A linear regression model: While S is a nonlinear and non-local function of u , empirically it is similar to the
zonal wind shear ∂u/∂z . This is a manifestation of the idealized case of constant wave flux density studied in
Lindzen and Holton (1968), where the forcing is exactly proportional to the zonal wind shear. Since ∂u/∂z can
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be linearly approximated by u (to any desired accuracy), it is conceivable that linear regression will approximate
the forcing to some degree. The linear model used here includes a bias term, i.e., we seek the least square fit to
S = [u, FS0, cw ]W + b , whereW ∈ Ò(N lev )x (N lev−2) , and b ∈ Ò(N lev−2) . Hence, the total number of “trainable”
parameters is 5254.

(ii) A fully connected feed-forward neural network (NN): The theoretical basis for this type of model is the universal
approximation theorem(s), which, generally speaking, establishes their ability to approximate nonlinear functions
to any desired accuracy provided sufficient degrees of freedom. See, e.g., Goodfellow et al. (2016) for an expo-
sition, and Espinosa et al. (2022) for an application to GW parameterizations. We start with a fully connected,
feed-forward, network, where each neuron in one layer is connected to all neurons in the following layer and the
information flows sequentially from the input layer, through the hidden layers, to the output layer. The network’s
architecture and optimization parameters are given in table 2 of Appendix B. The training dataset was first ran-
domly shuffled, and then split in half, for a total of 48 years of training samples and 48 years of validation samples.
The data was propagated through the network in batches of 360 days for 100 epochs. FS0 was scaled by F̄S0. No
scaling was applied on u and cw .

(iii) A dilated convolutional neural network (CNN): CNNs are a specialized form of NNs particularly suitable for data
made up of distinct and repeatable “building blocks”, e.g., headlights and bumpers of motor vehicles, or the shear
zones of the QBO. See, e.g., Goodfellow et al. (2016) for an exposition, and Chattopadhyay et al. (2020) for an
application to climate data. An important feature of CNN is that they are less prone to over-fitting than fully
connected networks. The CNN used here has the same architecture as the dilated CNN used in Hardiman et al.
(2023), consisting of one-dimensional filters with fixed kernel size and increasing dilation (increasing the filters’
receptive fields). The network’s architecture is given in table 3 of Appendix B. The optimization parameters and
training procedure were identical to those used for the NN.

(iv) An encoder-decoder (ED): This encoder-decoder structure is inspired by CNN variational autoencoders. ED is not
an autoencoder since the input and output are not the same, but the same structure is used to encode and decode
information. Convolutional layers are used to locally encode the input information onto a reduced dimension
latent space, where global interactions are processed with dense layers. The resulting latent space variable is
then decoded with transposed convolutional layers to yield the output. See Kingma and Welling (2013) for a
general exposition and Yang (??) for application to GW parameterizations. The parameters of the ED used here
are given in table 4 of Appendix B. The training dataset was split in half, for a total of 48 years of training samples
and 48 years of validation samples.

(v) A boosted forest (BF): Regression trees make predictions by traversing a binary tree according to the components
of the input vector. At each level, the traversal moves to the left or right by comparing a particular component of
the input against a predetermined threshold. The returned value is the mean of the training samples that reached
the same leaf as the input. Boosted forests are ensembles of trees where each new tree is trained on the residuals
of those trained before it, so that the ensemble prediction zeros in on the correct answer. See Breiman et al. (1984)
and Friedman (2001) for expositions of regression trees and boosted forests, respectively, and Connelly (??) for
an application to GW parameterizations. The parameters of the BF used here are given in table 5 of Appendix B.

(vi) A support vector regression (SVR) model: SVR is a variation of support vector machines, a popular classification
algorithm that attempts to make the data linearly separable by mapping it to higher dimensions. Similarly, by
mapping the data with the so-called “kernel trick”, SVR aims to restrict data points within an ϵ-tube of a hyper-
plane. Intuitively, the kernel allows one to narrow the space of comparison for an input sample, allowing for
nonlinear regression. Also, like support vector machines, one then finds only a subset of input data points, called
supported vectors, that have contributed to determine the SVR model. See, e.g., Drucker et al. (1996) and Smola
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and Schölkopf (2004) for a general exposition. Since SVR, by its nature, is designed for 1-dimensional output
regression, we used a column of independent 1-dimensional SVR models in our task. This model architecture
harms the efficiency as each of these 1-dimensional SVR models uses a different subset of support vectors. In
practice, we minimize the size of the training dataset to control the number of support vectors. We found that
an SVR model can emulate the source term satisfactorily even with only 1% of the dataset used for training (less
than 1 year of data). The parameters of the SVR model used here are given in table 6 of Appendix B.

These models were chosen to provide a “representative” sample of frequently used data-driven methods and
highlight potential strengths and weakness of different ML strategies, but not to make definitive statements that
approach A is always better than approach B. Importantly, they were not purposely designed for the present work.
For example, the CNNwas optimized to emulate theWarner andMcIntyre scheme in theMetOfficeHadGEM3-GA8.0
climate model (Hardiman et al., 2023); we use the same architecture, but trained on our control experiment. Likewise,
the ED and BF were designed to emulate the AD99 (Alexander and Dunkerton, 1999) GW parameterization in the
MiMA. In general, any ML strategy can be further optimized, and the “best” approach depends on the circumstances.
For a climate model, for instance, the constraint is ultimately the best skill for the least amount of computational
time, but even “skill” can be subjective: should we require the best climatology, or the best representation of extreme
events?

4 | RESULTS: ONLINE PERFORMANCE
We are interested in the coupled problem, where equation (1) is integrated numerically with the RHS replaced by the
corresponding model, often referred to as “online” simulation. When doing so, it is imperative to assess the models’
skill in their intended modus operandi. Attempting to optimize the models based on offline metrics can lead to online
instability, which is perhaps associated with overfitting. We therefore focus on our main goal: how do these models
perform online when grafted into the host?

4.1 | Control Experiment: Simulating the Present Day Climate
Figure 2 shows the QBO generated by the various ML models, compared to the physical model in panels (a,h), for the
last 6 years of a 108-year-long simulation. The left column shows the QBO in response to the control GW source
distribution, and the right column the response to the perturbed wave distribution. That is, the left column shows the
response to the wave distribution on which the ML models were trained, while the right column shows the QBO in
response to an out-of-set GW source distribution. Aside from the generation and maintenance of the QBO, perfor-
mance can be gauged by the amplitude and period of the resulting QBO, indicated in each panel.

Starting with the control experiment, all models (except linear regression) are able to capture both theQBOperiod
and amplitude quite well. To bemore precise, the estimated uncertainty in the QBO period for these centennial length
integrations is 0.5 months (0.4 for the linear model), based on the width of the dominant Fourier mode (figure 9 in
the supplementary material). All models agree with the “observed” QBO period (the physical model) to within this
uncertainty, except for the CNN where the period is biased long by 2 months. The QBO amplitude is also within the
estimated uncertainty for all cases (except linear regression), based on the standard error of the standard deviation.

The linear model is able to capture the QBO period surprisingly well, but not the amplitude. Examining the zonal
wind as a function of time (figure 10 of the supplementary material), it is evident that the linear model is unstable.
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There is a slow but steady trend in the amplitude, where changes in the wind strength feedback on the forcing. In this
particular case, the trend happens to be negative (the wind diminishes with time), but in other cases, the linear model
showed a positive trend (e.g., with an annually varying vertical wind).

The fact that all of the data-driven schemes perform well makes it easy to gloss over the key result in figure 2: all
ML schemes produce a stable and accurate simulation of the QBO when forced using the control GW sources. Their
stability is confirmed in figure 10 of the supplementary material, which verifies that there is no trend in the zonal wind
at z = 25 km for up to 108 years. The stability of the simulated QBO is not a trivial result. It is an “open secret” in the
community that high accuracy during training does not guarantee online stability (e.g., Brenowitz et al., 2020), and a
stable QBO is, after all, the raison d’être of a QBO model.

4.2 | Source Spectrum Sensitivity: Capturing the Response to a Climate Perturbation
We now examine the ability of our data-driven models to capture the sensitivities of the QBO amplitude and period to
changes in F̄S0 and c̄w . The context of this experiment is climate change. We use data-driven models trained only on
the control GW source distribution (F̄S0 = 3.5 mPa, c̄w = 32 m s-1) to simulate the QBO in a perturbed climate where
the source parameters have changed. This is a challenging test. While neural networks are capable of extrapolation,
the BF and SVR methods can only predict some combination of the data they have seen during training. Still, due to
the variability in FS0 and cw within the control integration (which represents the natural variability in observations),
even these two methods have a chance. The question is whether it is possible to learn enough from variability in the
“observations” to capture systematic changes introduced by the climate perturbation, at least to some extent.

First, consider the response to the perturbed source distribution (F̄S0 = 4.5 mPa, c̄w = 40 m s-1) in panels (h-n)
of figure 2. This systematic increase in both the source intensity and spectral width could reflect a warmer climate
with more intense and deeper convection. The QBO amplitude in the fully connected NN and dilated CNN models
increases in response to this change in the wave sources, in agreement with the physical model, the differences being
well within the sampling uncertainty. Yet, the QBO period in both simulations decreases relative to the control, in
contrast to the physical model where the period increased! That is, these models fail to capture the sensitivity of the
QBO period to the change in source distribution, even qualitatively. In contrast, the encoder-decoder model does
capture the increase in the QBO period, but not the amplitude. In fact, the amplitude of the QBO in the perturbed
simulation of the ED model is almost the same as that of the “observed” QBO, suggesting the ED model has not
“learned” the QBO amplitude sensitivity at all. The SVR model fails to capture the changes in both the amplitude and
period, even qualitatively. The BF is the only one that captures the qualitative changes in both the QBO amplitude
and period, namely a slower and stronger QBO. Yet, it fails to capture the changes quantitatively.

The perturbation experiment considered above represents just one, perhaps extreme, scenario. We now consider
the sensitivities of the different models to changes in the mean source flux and spectral width across the (F̄S0, c̄w )
plane. We integrate the models for each combination of F̄S0 and c̄w in our experimental range (3 ≤ F̄S0 ≤ 5 mPa,
25 ≤ c̄w ≤ 45 m s-1). For each integration, we compute the amplitude of the QBO at 25 and 20 km, and its period,
summarizing the results in Figure 4. The black dot in all panels indicates the control experiment on which the models
were trained. The white ellipse in panel (a) indicates the standard deviation of FS0 and cw samples in the training
dataset. The perturbation experiment shown in Figure 2 is marked by the black star, highlighting its distance from the
control experiment.

In terms of the QBO amplitude, the different models succeed to varying extent. The NN and CNN capture the
amplitude sensitivity “quite well”, perhaps even quantitatively considering the estimated uncertainty. The BF and SVR
model capture the amplitude sensitivity qualitatively, in the sense that the amplitude increases with increasing F̄S0 and
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c̄w , while the ED struggles to capture the amplitude sensitivity even qualitatively. In terms of the QBO period, all five
models fail to fully capture the period sensitivity. The CNN and SVRmodel capture the period sensitivity qualitatively,
in the sense that the period increases with decreasing F̄S0 and increasing c̄w . The NN captures the qualitative increase
in the period with decreasing F̄S0, but struggles to capture the sensitivity to c̄w altogether. The ED and BF capture
the qualitative increase in the period with increasing c̄w , but struggle to capture the sensitivity to F̄S0.

Recall that FS0 and cw are positively correlated, representing the positive correlation between the total precipita-
tion and depth of convection. Is it possible that this correlation is the reason why the NN, ED, and BF are only able
to learn the period sensitivity to one of them? Unlikely, considering that the NN and BF do capture the sensitivity
of the amplitude to both of these parameters and considering the CNN does capture the period sensitivity to both.
Yet, in order to rule out this hypothesis we have repeated the above calculation using the neural network with zero
correlation between FS0 and cw and the results are nearly identical (figures 11 and 12 in the supplementary material).

The observed QBO in the atmosphere is more irregular than that in our simple model, due to the annual cycle in
the vertical advection and GW sources, and random fluctuations from synoptic and planetary scale waves. Can we
improve the ML schemes ability to generalize by training on less regular data, allowing the models to “see” a wider
range of wind profiles? To test this hypothesis we have repeated the above calculations for all 5 models with an annual
cycle added to the vertical wind. Instead of the constant Brewer-Dobson upwelling w = 3 × 10−4 m s-1 used above,
we repeated the calculations for

w (t ) =
[
3 + 2 sin

(
2πt

360 days
)
+ εw

]
× 10−4m s−1, (5)

where εw ∼ U (−0.5, 0.5) is a white noise. Figures 13 and 14 in the supplementary material show that our models
learn the new, less regular, control QBO. Yet, we observed no improvements in terms of their ability to capture the
sensitivity to changes in FS0 and cw .

Finally, having examined the global sensitivity of the solutions over our wide experimental range, we now take a
closer look at the local sensitivity in the vicinity of the control source distribution, which would represent a gradual
climate drift. Figure 6 shows the partial derivatives of the high-level amplitude (left column, blue shadings), low-level
amplitude (center column, green shading), and period (right column, purple shading) with respect to FS0 (top row) and
cw (bottom row). The partial derivatives in this figure are normalized on the corresponding derivatives in the physical
model. Thus a value of 1 corresponds to the correct response, and values greater (less) than 1 indicate a exaggerated
(muted) response relative to the to the physical model.

No one method perfectly captures the partial derivatives at the control distribution. The NN and CNN are overly
sensitive to changes in F̄S0, for both the QBO amplitude and period, but under-predict the response to changes in cw .
As observed above, the ED struggles to capture any response to changes in F̄S0, and only weakly responds to changes
in cw . The BF performs well across most metrics, but captures the wrong sign of the period response to changes in
F̄S0. Finally, considering the estimated uncertainty, the SVR model is perhaps the most accurate locally.

4.3 | Calibration: Preconditioning the Source Distribution
In the climate change context of the previous section, we wanted the data-driven schemes to capture the response
to changes in the source distribution. However, this skill does not assist with the calibration problem and can work
against it. A scheme perfectly capable of generalizing will react to model biases and cement them when grafted into
a numerical model with biased sources. Thus, a different measure is needed to account for model biases, and, to the
extent that the training dataset does, indeed, represent the observed conditions, the scheme ought to be changed as



14 Shamir et al.

little as possible.
A simple way to overcome a model bias in the sources, while also adhering to the observational constraints, is

a preconditioning step where the wave sources are first re-mapped to the observed distribution before being fed to
the GW scheme. For example, if the precipitation in a model is systematically too large relative to the observations,
one would always need to reduce the value of FS0 provided by the model before passing it to the data-driven scheme;
otherwise, theGWmomentum forcingwould be systematically larger, biasing theQBO. Themapping is done bymeans
of the sources’ cumulative distribution function (CDF), such that the amplitude of convection at the 95th percentile
level in the model is re-scaled to that of the 95th percentile in the observations, and so forth. The advantage of this
approach is that it is agnostic to the chosen data-driven method.

The procedure is greatly simplified by the fact that our data-driven schemes are only weakly sensitive to the
correlation between the source flux and spectral width (section 4.2 and figures 11 and 12 in the supplementary
material), and can be treated as independent random variables. Using (informally) the solution of the one-dimension
optimal transport problem, they are re-mapped as follows:

Xre−mapped = CDF −1observed ◦ CDFbiased (Xbiased ), (6)
where X ∈ {FS0, cw }. The CDFs are evaluated empirically as

CDF (x ) = 1

Nsamples
Nsamples∑

i=1

1Xi ≤x , (7)

where 1X ≤x is the indicator function (i.e., 1X ≤x = 1 for X ≤ x and 0 otherwise).
The observed sources enter (6) implicitly via their estimated distribution. In practice, (7) is evaluated on the sam-

pledwave sources. In order to applyCDF −1observed to arbitrary images ofCDFbiased, the CDFswere linearly interpolated.
In the present work the wave sources can be drawn from the bivariate log-normal distribution upfront, so the empiri-
cal CDFs can be evaluated a priori, and the interpolation has to be applied only once. In GCMs, the wave sources are
generated online, so the CDFs have to be evaluated and interpolated repeatedly, every time the wave sources in the
model are re-generated.

Figure 7 shows the CDFs of the “observed” (blue dots), biased (green dots), and the re-mapped source flux (a)
and spectral width (b), confirming that the re-mapped sources are distributed according to the “observed” distribution.
Figure 8 shows the simulated QBO, using the neural network, before (a) and after (b) re-mapping the sources. Upon
re-mapping the sources, the neural network yields the correct QBO amplitude and period and is stable for at least
108 years, confirming, a postriori, our assumption that F̄S0 and c̄w can be treated independently for the purpose of
modeling the wave drags.

While this preconditioning approach works well for calibrating the scheme to work in the current climate, it is
unclear how much it can be trusted in a climate change context. It would provide the correct response if the relative
change in the source distribution in the host matches the relative change in the “true” source distribution. This is
admittedly a tall order if the source distribution in the host is different from that in the control climate to begin with.

5 | DISCUSSION
A primary concern with the advent of machine learning for climate modeling is making sure that the models yield the
right results for the right reasons. The particular example studied here is the graft-versus-host problem, where a data-
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driven scheme might be incompatible with its host climate model, leading to erroneous results, or potentially more
insidious, provide the right results for the control climate, but have no ability to generalize to different conditions.
The challenge is that, more so than traditional physics-based schemes, a data-driven scheme must adhere to the
observational constraints imposed during training. Re-training (parts of) the scheme using data from the host model,
for example, runs the risk of overriding the observational constraints.

We considered the graft-versus-host problem for data-driven gravity waves (GW) parameterizations in a stochas-
tically driven 1D quasi-biennial oscillation (QBO) model, where climate change (the generalization problem) andmodel
biases (the calibration problem) are represented by perturbations in the GW source distribution. In the former case,
we want to capture the response to a physically induced change in the sources. In the latter, we have to correct for a
nonphysical bias in the model’s sources. These can be conflicting aims, and the best we can hope for is a scheme that
generalizes well, but can be sensibly adjusted to work in the control climate.

Our results demonstrate that data-driven schemes trained on “observations” are sensitive to perturbations in the
wave sources. While all methods considered here were able to accurately emulate the stochastic source term on
which they were trained, no one method was able to fully generalize to perturbations in the wave sources, in terms
of the amplitude and period of the resulting QBO. Some methods were able to capture the sensitivity of the QBO
amplitude to changes in the wave sources (even quantitatively), others captured the sensitivity of the QBO period
(mostly qualitatively), but no method captured the full response.

We showed that a scheme can be calibrated by preconditioning the sources to account for differences in the
source distribution between the observed climate and host model. For a relatively low dimensional problem like
this, optimal transport allows us to re-map the source distributions, so that data-driven scheme sees the same wave
distribution when grafted into the host as it did from the observations. This approach, however, will only generalize
to new climate conditions to the extent that a data-driven scheme can learn the climate sensitivity from the observed,
present-day, variability.

We have focused on the sensitivity to biases in the wave sources, which is a primary source of uncertainty in
climate models. Other model biases can trigger the graft-versus-host problem as well, for example, biases in the
Brewer-Dobson circulation (represented here by the upwelling velocityw ), or differences in the resolved wave forcing.
This raises the difficult issue of making a data-driven scheme scale-aware. In a realistic context, one must make
assumptions about what is “resolved” vs “unresolved” in the construction of the training dataset. Ideally, one could
custom-build the training dataset for a given model, but when this is not practical, transfer learning may be an option.
Transfer learning is also an option for preparing a scheme to work in a climate change context if one can obtain
limited data from the future climate, e.g., from a high-resolution model with modified boundary conditions taken from
a climate change scenario integration Sun et al. (2023b).

Another issue concerning the development of data-driven parameterizations is the length of the training set. In
the present work, we considered a plentiful data limit in order to test our schemes at their best. In practice, however,
the high-frequency, high-resolution, outputs required to resolve gravity waves limit the length of the records. A typical
training set is expected to cover short periods, on the order of weeks (e.g., Sun et al., 2023a) to months. Pahlavan
et al. (2023) studied the small versus large data regimes in a 1D QBO model in more details. They found that 18
months of data were insufficient for emulating a (physically and numerically) stable QBO using a 12-layer CNN (with
about 11,000 trainable parameters), even for a simpler configuration of the model with only two waves, no vertical
advection, and a white noise forcing. They were able to make their scheme stable by iteratively re-training the second
and last layers of their CNN (with additional data), a form of transfer learning termed “offline-online learning”.

The limited data problem, however, is exacerbated in the 1D model. A data-driven method trained on higher
complexity climate model outputs, benefits from additional variables and geographical regions, such as outside of the
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Tropics. Indeed, Espinosa et al. (2022) were able to learn the AD99 scheme in MiMA using only 12 months of global
data, when the QBO was in its westerly phase: the key was training data from the midlatitudes, which provided a
wider range of wind and momentum deposition profiles. The strength of the 1-D model is that it allows us to explore
all the difficult issues on the machine learning side with a very simple atmospheric model, here simply the left-hand
side of equation 1. It allowed us to explore a wide range of data-driven approaches in the coupled context, highlighting
strengths and weaknesses of each approach. In future work, we plan to use it to explore these thornier questions of
calibration in the context of more varied model biases, and to extend the offline-online learning approach of Pahlavan
et al. (2023) to the climate change context.

6 | SUPPLEMENTARY MATERIAL
The supplementary material is attached here to the main text for convenience.
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A | NUMERICAL SCHEME
Equation (1) is discretized using a semi-implicit scheme, combining an implicit scheme for the advection/diffusion
terms (centered in both time and space) and a (explicit) leapfrog scheme for the source term. The discretized model
equation on the numerical grid (i∆t , j∆z ) , for fixed ∆t , ∆z , i = 1, 2, 3, . . . , and j = 1, 2, 3, . . . ,N , is[I + ∆t

(diag(wi+1 )D1 − κD2)] ui+1 =
[I − ∆t

(diag(wi−1 )D1 − κD2)] ui−1 − 2∆tSi , (8)
where the superscripts denote the time step, ui = (u i1, ...,u

i
N )T is the vector of discretized unknowns, Si = (S i

1, ..., S
i
N )T

is the vector of discretized source term, wi = (w i
1, ...,w

i
N )T is the vector of discretized vertical wind , I is the N × N
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identity, and D1 and D2 are the differentiation matrices for the first and second order derivatives defined here as

D1i j =


0 for i = 1, 1 ≤ j ≤ N ,

(δi j+1 − δi j −1 )/2∆z for 1 < i < N , 1 ≤ j ≤ N ,

0 for i = N , 1 ≤ j ≤ N ,

(9)

and

D2i j =


0 for i = 1, 1 ≤ j ≤ N ,

(δi j+1 − 2δi j + δi j −1 )/∆z 2 for 1 < i < N , 1 ≤ j ≤ N ,

0 for i = N , 1 ≤ j ≤ N ,

(10)

where δi j is the Kronecker delta.
Note, zeroing-out the first and last rows of D1 and D2, implies that the tendency at the boundaries is determined

by the source term, i.e,
u i+1{1,N } = u i−1{1,N } − 2∆t S i

{1,N }, (11)
where the subscripts denote the vertical levels. Numerically, we compute the source term by applying D1 to the flux
F (z ,u ) , denoted by lower braces in (2), which zeros-out the source term at the boundaries. Thus, if the initial wind
and wind tendency at the boundaries are zero, u i{1,N } remain zero for all i = 0, 1, 2, . . . .
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F IGURE 2 The simulated QBO in the data-driven models. Left column: In response to the “true” GW sources.
In response to the biased GW sources. From top to bottom: (a,h) The physical model for comparison. (b,i) The linear
regression model. (c,j) The fully connected neural network. (d,k) The dilated convolutional neural network. (e,l) The
encoder-decoder. (f,m) The boosted forest. (g,n) The support vector regression model. The color scale is determined
by the global absolute maximum of the zonal wind in the control experiment of the physical model, with 21 equally
spaced contours between ±max |u | , and is uniform across all panels. The high-level amplitude (σ25), low-levelamplitude (σ20), and period (τ25) of the simulated QBO in each model, estimated as detailed in section 2.1, are
indicated in the panels.
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F IGURE 3 The QBO objective. The (log-scaled) objective in (4) as a function of the mean source flux (ordinate)
and spectral width (abscissa). The optimum at (F̄S0 = 3.5 mPa, c̄w = 32 m s-1) (precise to 0.1 mPA in F̄S0 and 1 m s-1
in c̄w ), indicated by a black dot, corresponds to the control source distribution and represents the “observed”
distribution. The black star at (F̄S0 = 4.5 mPa, c̄w = 40 m s-1) indicates the biased distribution in the “host” model.
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F IGURE 4 The QBO sensitivity in the data-driven models. The sensitivities of the high-level amplitude (left,
blue shading), low-level amplitude (center, green shading), and period (right, purple shading) to changes in the mean
spectral width c̄w (abscissa) and source flux F̄S0 (ordinate). From top to bottom: (a) The physical model for
comparison. (b) The fully connected neural network. (c) The dilated convolutional neural network. (d) The
encoder-decoder. (e) The boosted forest. (f) The support vector regression model. The black dot at (cw = 32 m s-1,
FS0 = 3.5 mPa), in each panel, indicates the control experiment used for training. The black star at (F̄S0 = 4.5 mPa,
c̄w = 40 m s-1) indicates the biased distribution. The white ellipse in panel (a) indicates the standard deviation of FS0and cw samples in the training dataset.
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F IGURE 5 The training dataset. A total of 6 years of daily time samples, out of the 96 years available in the
training dataset, are shown. The samples need not be ordered sequentially during training. For each sample, the
inputs consist of (a) the zonal wind profile (excluding the top and bottom boundaries), (b) the source flux, and (c) the
spectral width of the GW packet. The output consists of the GW drags (excluding the boundaries). During training,
the data is subject to standardization, and hence the units are arbitrary.
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F IGURE 6 The QBO local sensitivity. The gradient of the high-level amplitude (left, blue shading), low-level
amplitude (center, green shading), and period (right, purple shading) at the control distribution. Top: the partial
derivative with respect to the mean source flux F̄S0. Bottom: the partial derivative with respect to the mean spectral
width c̄w . The derivatives for each model (each bar) are normalized by the corresponding derivative of the physical
model.
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F IGURE 8 Source re-mapping in the neural network model. The simulated QBO using the neural network (a)
with biased sources and (b) after re-mapping the biased sources to the observed ones. The color scale is determined
by the global absolute maximum of the zonal wind in the unbiased physical model (i.e. as in figure 2), with 21 equally
spaced contours between ±max |u |. The high-level amplitude (σ25), low-level amplitude (σ20), and period (τ25) of thesimulated QBO in each model, estimated as detailed in section 2.1, are indicated in the panels.
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F IGURE 9 SupplementaryFourier analysis of the zonal wind at z = 25 km. The figure confirms the existence of
a dominant Fourier mode, which is used to estimated the QBO period. The width of this mode provides a lower
bound on the uncertainty in the resulting period, and is estimated here by means of the first standard deviation
(indicated in the panels by vertical dashed lines). From top to bottom: (a) The physical model for comparison, same
as figure 2. (b) The linear regression model. (c) The fully connected neural network. (d) The dilated convolutional
neural network. (e) The encoder-decoder. (f) The boosted forest. (g) The support vector regression model.
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F IGURE 10 SupplementaryZonal wind at z = 25 km as a function of time. From top to bottom: (a) The physical
model for comparison, same as figure 2. (b) The linear regression model. (c) The fully connected neural network. (d)
The dilated convolutional neural network. (e) The encoder-decoder. (f) The boosted forest. (g) The support vector
regression model.
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F IGURE 11 SupplementaryQBO correlation sensitivity. Same as figure 2(c), i.e. simulated using a fully
connected neural network, but when the spectral width and source flux in the training dataset are uncorrelated. The
color scale is determined by the global absolute maximum of the zonal wind in the physical model, with 21 equally
spaced contours between ±max |u |. The high-level amplitude (σ25), low-level amplitude (σ20), and period (τ25) of thesimulated QBO in each model, estimated as detailed in section 2.1, are indicated in the panels.
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F IGURE 12 SupplementarySource distribution correlation sensitivity. Same as figure 4(b), i.e. simulated using a
fully connected neural network, but when the spectral width and source flux in the training dataset are uncorrelated.
The sensitivities of the high-level amplitude (left, blue shading), low-level amplitude (center, green shading), and
period (right, purple shading) to changes in the mean spectral width c̄w (abscissa) and source flux F̄S0 (ordinate).
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F IGURE 13 SupplementaryThe simulated QBO in the data-driven models. As in figure 2 of the main text, but
in response to the annually varying vertical wind in (5). Left column: In response to the “observed” GW sources. In
response to the biased GW sources. From top to bottom: (a,h) The physical model for comparison. (b,i) The linear
regression model. (c,j) The fully connected neural network. (d,k) The dilated convolutional neural network. (e,l) The
encoder-decoder. (f,m) The boosted forest. (g,n) The support vector regression model. The color scale is determined
by the global absolute maximum of the zonal wind in the control experiment of the physical model, with 21 equally
spaced contours between ±max |u | , and is uniform across all panels. The high-level amplitude (σ25), low-levelamplitude (σ20), and period (τ25) of the simulated QBO in each model, estimated as detailed in section 2.1, are
indicated in the panels.
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F IGURE 14 SupplementaryThe QBO sensitivity in the data-driven models. As in figure 4 of the main text, but
in response to the annually varying vertical wind in 5. The sensitivities of the high-level amplitude (left, blue
shading), low-level amplitude (center, green shading), and period (right, purple shading) to changes in the mean
spectral width c̄w (abscissa) and source flux F̄S0 (ordinate). From top to bottom: (a) The physical model for
comparison, same as figure 4. (b) The fully connected neural network. (c) The dilated convolutional neural network.
(d) The encoder-decoder. (e) The boosted forest. (f) The support vector regression model. The black dot at (cw = 32

m s-1, FS0 = 3.5 mPa), in each panel, indicates the control experiment used for training.
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TABLE 1 Physical model parameters
Domain
Final time (tf ) 108 yearsa
Temporal spacing (∆t ) 86400 s
Bottom boundary (z1) 17 × 103 m
Top boundary (zN ) 35 × 103 m
Vertical spacing (∆z ) 250 m
Background State
Density profileb,c (ρ) (P0/RdT0 ) exp[−(g/RdT0 )z ]
Reference pressure (P0) 101325 Pa
Gas constant for dry air (Rd ) 287.04 J Kg-1 K-1
Reference temperature (T0) 204 K
Gravitational acceleration (g ) 9.8 m s-2
Brunt-Väisälä frequencyd (N ) 2.16 × 10−2 s-1
Model
Diffusion coefficientb (κ) 0.3 m2 s-1
Vertical winde,f (w ) 3 × 10−4 m s-1
GW Forcing
Number of waves (Nwaves) 20
Zonal wavenumbers (kn ) 2 × 2π/(4 × 107) m-1 for n = 1, . . . , 20

Phase speeds (cn )

−100 m s-1 + 10(n − 1) m s-1 for n = 1, . . . , 10

10(n − 10) m s-1 for n = 11, . . . , 20

Wave dissipationb (α )


1
21days−1 +

(
z−17
13

)
2
21days−1 for 17km ≤ z ≤ 30km

3
21days−1 for 30km ≤ z ≤ 35km

GW Source Distribution “Observed” “Perturbed/Biased”
Mean total source flux (F̄S0) 3.5 mPa 4.5 mPa
STD total source flux 0.3 mPa 0.3 mPa
Mean spectral width (c̄w ) 32 m s-1 40 m s-1
STD spectral width (STDcw ) 16 m s-1 16 m s-1
Correlation 0.75 0.75

aUsing a 30-day month calendar (i.e. 1 year = 360 days).
bFollowing Holton and Lindzen (1972).
cAssuming an isothermal atmosphere.
dCorresponding to the chosen values of P0 andT0 for an isothermal atmosphere (i.e. not an additional free param-
eter).
eCorresponding to the Brewer–Dobson circulation in the Tropics at 70 hPa (Butchart, 2014).
f In section 4.2 we also examine an annually varying vertical wind with noise as detailed in (5).
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TABLE 2 Fully connected feed-forward neural network parameters.
Architecture [Linear(# inputs, # outputs), activation]
Input layer [Linear(nlev-2+2, nlev), ReLU]a,b
(Hidden) Layers 2-9 [Linear(nlev, nlev), ReLU]
Output layer [Linear(nlev, nlev-2), None]
# Trainable parameters 53,872
Optimization
Loss function Relative MSE = ∑(prediction − target)2/∑ target2
Optimizer Adamc,d

Learning rate 10−3

aThe linear layers are written in PyTorch syntax.
bSimilar results were obtained using a Tanh activation instead.
cKingma and Ba (2014).
d Similar results were obtained using Stochastic Gradient Decent instead.

TABLE 3 Dilated convolutional neural network parameters. The optimization parameters are the same as for the
NN in Table 2.
Architecture [Conv1D(in channels, out channels, kernel size, stride, padding, dilation), activation]a
Layer 1 [Conv1D(1, 20, 5, 1, 2, 0), ReLU]
Layer 2 [Conv1D(20, 40, 5, 1, 6, 3), ReLU]
Layer 3 [Conv1D(40, 60, 5, 1, 10, 5), ReLU]
Layer 4 [Conv1D(60, 80, 5, 1, 22, 11), ReLU]
Layer 5 [Conv1D(80, 60, 5, 1, 10, 5), ReLU]
Layer 6 [Conv1D(60, 40, 5, 1, 6, 3), ReLU]
Layer 7 [Conv1D(40, 20, 5, 1, 2, 0), None]
Layer 8 [Conv1D(20, 1, 5, 1, 2, 0), None]
# Trainable parameters 80,521

a The 1D convolution layers are written in PyTorch syntax.

TABLE 4 Encoder-decoder network parameters.
Architecture Encoder-Dense-Decoder
# Trainable parameters 13, 261

Activation function Exponential Linear Unit function
Optimization
Loss function Mean Squared Error
Optimizer Adama

Learning rate Start at 1e-3, and reduce on plateau by 0.5
aKingma and Ba (2014).
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TABLE 5 Boosted forest parameters.
Architecture
Tree maximum deptha 15
Number of trees 72
Fraction of samples per treea 0.5
Fraction of features per node 0.5
# Trainable parameters 1,111,866
Optimization
Impurity Gini
Learning ratea 0.05
Validation setb 20% of training data

a Selected with 3-fold cross validation.
b Used to determine when to stop adding trees to the ensemble.

TABLE 6 Support vector regression model parameters.
Architecture
# Support vectors 20% (train/test split) * 34560(size of dataset) = 6912
Kernel: RBF kernel K (x , y ) = exp(−γ ∥x − y ∥22 ) , where γ = 0.05 a

# Trainable parameters 490823
Optimization
Loss function Hinge loss with ϵ = 1e − 4

Regularization (penalty) C = 16

a The notation follows Sklearn syntax.
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