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Abstract12

We train random and boosted forests, two machine learning architectures based on regression13

trees, to emulate a physics-based parameterization of atmospheric gravity wave momentum14

transport. We compare the forests to a neural network benchmark, evaluating both offline15

errors and online performance when coupled to an atmospheric model under the present day16

climate and in 800 and 1200 ppm CO2 global warming scenarios. Offline, the boosted forest17

exhibits similar skill to the neural network, while the random forest scores significantly lower.18

Both forest models couple stably to the atmospheric model, and control climate integrations19

with the boosted forest exhibit lower biases than those with the neural network. Integrations20

with all three data-driven emulators successfully capture the Quasi-Biennial Oscillation21

(QBO) and sudden stratospheric warmings, key modes of stratospheric variability, with the22

boosted forest more accurate than the random forest in replicating their statistics across23

our range of carbon dioxide perturbations. The boosted forest and neural network capture24

the sign of the QBO period response to increased CO2, though both struggle with the25

magnitude of this response under the more extreme 1200 ppm scenario. To investigate the26

connection between performance in the control climate and the ability to generalize, we use27

techniques from interpretable machine learning to understand how the data-driven methods28

use physical information. We leverage this understanding to develop a retraining procedure29

that improves the coupled performance of the boosted forest in the control climate and30

under the 800 ppm CO2 scenario.31

Plain Language Summary32

Parameterizations are reduced-complexity models that estimate the effects of physical33

processes smaller than what can be resolved by the grid of a weather or climate model. While34

necessary for realistic simulations, they are a source of uncertainty in climate projections.35

Recently, machine learning has been used to augment or replace conventional parameteriza-36

tions of atmospheric gravity waves, a type of motion by which disturbances near the Earth’s37

surface can affect the wind higher up. We compare several machine learning approaches to38

the gravity wave parameterization problem. In particular, we test neural networks against39

random and boosted forests, which are built around flowchart-like models called regression40

trees. We find that boosted forests, though not widely used for climate model parameteri-41

zation, are especially successful, scoring as well as or better than neural networks on various42

performance metrics. We then provide proof-of-concept of a novel method to retrain the43
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boosted forest so that it uses its input data more in line with the physics of the system,44

and show that this technique improves the forest’s behavior when used together with an45

atmospheric model.46

1 Introduction47

Momentum transport by atmospheric gravity waves is a key driver of several features48

of the large-scale circulation, such as the Quasi-Biennial Oscillation (QBO) in the tropical49

stratosphere (Fritts & Alexander, 2003), and influences others, including the tropospheric50

jet structure (Palmer et al., 1986). Waves transporting appreciable momentum can have51

horizontal and vertical wavelengths as small as 100m. Because of the small scales at play,52

atmospheric models must rely on parameterizations of gravity wave momentum flux to53

represent these climate features (Anstey et al., 2022).54

Gravity wave parameterizations (GWPs), however, must make simplifying assumptions55

about wave propagation to remain computationally feasible. The dynamics may be derived56

from the linearized equations of motion, for example, assuming planar waves that do not57

interact with each other. In addition, schemes are in general computationally constrained58

to operate on single atmospheric columns, so that they cannot model lateral propagation.59

Due to these limitations, GWPs are significant sources of model uncertainty. For exam-60

ple, parameterizations tuned to match present-day QBO statistics can produce different61

projections of QBO behavior in warmer climate simulations (Richter et al., 2022).62

Recently, machine learning has been used to build new parameterizations of subgrid-63

scale phenomena including ocean eddy momentum forcings (Bolton & Zanna, 2019), radia-64

tive and microphysical tendencies in atmospheric moisture variables (Yuval & O’Gorman,65

2020), and gravity wave momentum transport (Chantry et al., 2021; Espinosa et al., 2022).66

Such approaches attempt to learn a mapping from resolved-scale variables to subgrid quan-67

tities from data. Machine learning can be employed both to learn these relationships from68

increasingly available high-resolution data (Brenowitz & Bretherton, 2018; O’Gorman &69

Dwyer, 2018; Bolton & Zanna, 2019; Yuval & O’Gorman, 2020) and to accelerate existing70

parameterizations by replacing them with emulators (Chevallier et al., 1998; Chantry et al.,71

2021).72

Building on work by Espinosa et al. (2022), we explore the use of machine learning73

models to emulate the behavior of an existing, physics-based reference parameterization,74
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the Alexander and Dunkerton (1999) scheme (hereafter AD99) as it is implemented in75

the Model of an idealized Moist Atmosphere (MiMA), an intermediate-complexity climate76

model (Garfinkel et al., 2020). Emulation serves as an intermediate step towards training77

fully data-driven GWPs using a combination of observations of gravity waves and high-78

resolution simulations capable of resolving them.79

In particular, emulation allows us to address challenges inherent to the design of data-80

driven GWPs — e.g. comparing machine learning architectures, achieving stable coupling81

with atmospheric models, and testing the ability of schemes to generalize — separately82

from issues of data availability and processing that arise when working with more realistic83

data sources. In the emulation problem, data is cheap to generate by running the reference84

parameterization. Moreover, AD99 produces a reference climate when coupled to MiMA,85

which can be perturbed by increasing the carbon dioxide concentration. As a result, there are86

straightforward performance metrics when coupling data-driven emulators and evaluating87

their performance in a warmer climate.88

Espinosa et al. (2022) used neural networks to emulate AD99, finding that they could89

reproduce both the QBO and its AD99-predicted response to an increase in CO2. The90

principal contributions of this work are the application of tree-based machine learning ar-91

chitectures to the same problem, the comparison of their offline and online performance with92

that of neural networks, and the use of offline feature importance analyses to develop a re-93

training procedure that improves online behavior. Section 2 introduces the parameterization94

to be emulated and characterizes the datasets used. Section 3 describes the machine learn-95

ing architectures along with the interpretability techniques used to analyze them. Section 496

presents the performance of the emulators, both offline and in coupled integrations under a97

series of CO2 perturbations. Section 5 analyzes the emulators’ preferential use of particular98

input features to explain their offline and online behavior using so-called interpretable ma-99

chine learning techniques. Section 6 reviews the main results and discusses future research100

directions.101

2 Models and data102

We begin with descriptions of the atmospheric model MiMA and the reference param-103

eterization AD99. These are relevant to our work in that they are used to generate the104
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training and offline test datasets, the main features of which are outlined in Section 2.2, and105

in that they are necessary for the coupled integration experiments summarized in Section 2.3.106

2.1 MiMA and the AD99 parameterization107

The Model of an idealized Moist Atmosphere (MiMA) is an atmospheric circulation108

model coupled with a purely thermodynamic, or slab, ocean model. The atmosphere com-109

ponent includes interactive moisture, full radiation with the Rapid Radiative Transfer Model110

scheme (Mlawer et al., 1997; Iacono et al., 2000), and Betts-Miller convection (Betts, 1986;111

Betts & Miller, 1986). The carbon dioxide concentration is set globally at 390 ppm, though112

we change this value in experiments presented later in this work. Ozone is distributed113

according to the monthly- and zonal-mean climatologies used in CMIP6 pre-industrial sim-114

ulations (Checa-Garcia et al., 2018; Checa-Garcia, 2018). See Jucker and Gerber (2017)115

and Garfinkel et al. (2020) for a complete description of MiMA.116

The AD99 gravity wave parameterization takes in resolved-scale variables from a single117

column and time step of an atmospheric model and returns the velocity tendencies from118

parameterized gravity waves at each vertical level. The scheme computes the forcing by119

propagating a collection of independent, monochromatic waves of varying phase speed from120

the tropopause. Each wave has an associated momentum flux determined by a parameter-121

ized source spectrum. That momentum flux spectrum, Gaussian in magnitude with width122

35m s−1, is positive for phase speeds greater than the source level velocity and negative123

elsewhere. The amplitude peak is at phase speed zero in the extratropics, where gravity124

waves are assumed to be mainly orographic, and at phase speed equal to the source level125

velocity in the tropics, where waves are assumed to be generated by convection. The source126

spectrum and launch level vary only with latitude, a key simplification of the scheme.127

Waves are propagated upwards until they reach a level where one of several breaking128

criteria is met, where they deposit their momentum. Breaking occurs either when the129

density is sufficiently low to permit overturning or at a critical level, where the mean flow130

speed is very close to the wave’s phase speed and the vertical group velocity is accordingly131

very small. Waves that reach the model top without breaking have their momentum flux132

evenly distributed over the highest three vertical levels. We refer the reader to Alexander133

and Dunkerton (1999) for a detailed discussion of the parameterization.134
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2.2 Training inputs and outputs135

Machine learning parameterizations use data to learn a mapping from resolved scale136

variables to subgrid quantities — or, in this case, to learn the mapping encoded in AD99.137

To generate training data, we first run MiMA for 20 years, using AD99 as the gravity wave138

parameterization, to ensure the climate system has reached statistical equilibrium. We then139

integrate for a further 60 years, outputting data every six hours. At T42 resolution, this140

control run yields just under 12 million vertical profiles per year of model time. We sample141

10 million profiles from the first 4 years of this 60-year run to use as training data, and142

another 10 million profiles from years 5-8 to use as an offline test set.143

We explore the use of various resolved-scale variables as input features, the data passed144

as input to our machine learning emulators. These may include vertical profiles of wind u or145

v, temperature T , or buoyancy frequency N . We provide some models with a profile of the146

differences between winds at adjacent levels; this feature has units of m s−1 and, for brevity,147

we call it the shear. Every emulator takes in the latitude ϑ and surface pressure ps of each148

training sample, except when we explicitly test the effects of withholding these features. We149

expect latitude to be an important feature because, in AD99, the peak of the gravity wave150

momentum flux source spectrum transitions from phase speed zero in the extratropics to151

phase speed moving with the tropopause flow in the tropics. The source level also varies152

with latitude to follow the tropopause.153

The targets, the outputs associated with particular inputs that the machine learning154

model tries to predict, are the AD99 gravity wave accelerations at each of the 40 vertical155

levels in MiMA. Because AD99 handles zonal and meridional accelerations identically, our156

emulators are trained on both zonal and meridional data. When predicting zonal accelera-157

tion, they take u as an input feature, and likewise they take v when predicting meridional158

acceleration. Both the training and test datasets are evenly split between zonal and merid-159

ional samples.160

The left panel of Figure 1 shows example zonal wind and temperature profiles, and161

the black curve in the right panel is the resulting gravity wave acceleration profile as pa-162

rameterized by AD99. Note that the target accelerations vary by two to three orders of163

magnitude over the vertical column. We use the mean and variance of the accelerations at164

each vertical level, computed from the training samples, to standardize the targets to zero165

mean and unit variance. As a result, the emulators weight errors at each level equally, as166
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Figure 1. Example wind and temperature profiles (left) and the resulting parameterized accel-

erations predicted by AD99 and several emulators (right).
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opposed to prioritizing performance near the model top at the expense of the lower levels.167

We rescale emulator predictions to their original units before using them to compute offline168

performance metrics like R2 or passing them to MiMA in coupled runs.169

2.3 Coupled integrations170

After training and offline error analysis, we couple each trained emulator to MiMA,171

initialized with the final state of the spinup used to initialize the AD99 control run, and172

integrate for 60 years. The configuration is identical to that of the control run except that173

the emulators are used in place of AD99.174

To assess the emulators’ response to climate perturbations, we also run MiMA with175

the CO2 concentration set at 800 ppm and at 1200 ppm. As with the 390 ppm CO2 control176

runs, for each concentration value, we first integrate with AD99 for twenty years of spinup177

followed by sixty further years. We then couple each emulator (without retraining) and178

integrate for sixty years starting from the final state of the same spinup period.179

For all coupled integrations, we retain only the last 56 years for analysis. Section 4180

discusses the output of these integrations.181

3 Machine learning architectures and interpretation182

In this section, we first review tree- and forest-based machine learning architectures,183

distinguishing between random and boosted forests, and specify the neural network bench-184

mark. Random forests have been used in atmospheric modeling before (O’Gorman & Dwyer,185

2018); however, we believe this work is the first use in this context of boosting, which is well-186

known in the broader machine learning literature. Next, we summarize the interpretability187

metric we use to analyze the behavior of our emulators. Finally, we indicate the existing188

libraries we used and briefly describe new software written for this study.189

3.1 Regression trees and forests190

The way humans solve problems is often well-approximated by asking a series of yes-no191

questions about the available data and predicting accordingly. For example, if asked to192

guess the price of a house, one might first ask if it is located in New York, then whether193

it has more than two bedrooms, and so on, perhaps selecting later questions based on the194

answers to earlier ones.195
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Figure 2. A simple regression tree. Leaf nodes are shaded. Note that the predictions of this

example tree are scalars (e.g. accelerations at a particular level), while the trees used in this work

yield vector-valued predictions (acceleration profiles).

Regression trees (Breiman et al., 1984) are machine learning models that attempt to196

make predictions in an analogous manner. Once trained, they make predictions by traversing197

a binary tree according to the given input features. The traversal repeatedly proceeds to198

one of the current node’s two children based on whether a specified input feature exceeds199

a set threshold. The tree returns as its prediction the value stored at whichever leaf node200

the traversal terminates at. Figure 2 shows a simple schematic of a regression tree with201

features relevant to the gravity wave parameterization problem. See Text S1 for a detailed202

explanation of how regression trees are constructed from training data.203

If their depth is unlimited, regression trees can achieve zero error on the training data.204

However, such trees typically generalize very poorly to unseen samples because they have205

learned the noise in the dataset. Instead, a lower-variance model can be constructed from206

an ensemble, or forest, of regression trees of fixed depth. In this study we consider two kinds207

of ensembles: random forests and boosted forests.208

A random forest (Breiman, 2001) is a collection of regression trees, each of which is209

trained independently on a bootstrapped subsample of the training dataset. The prediction210

of the forest is simply the mean of the predictions of each constituent tree. Figure 3(a)211

shows this concept: individual ensemble members have high error, but their ensemble mean212

matches the target much more closely.213

The term boosting (Schapire, 1990) encompasses a wide class of machine learning algo-214

rithms that train individual ensemble members sequentially and combine them into a more215
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Figure 3. The types of regression forests considered in this work, shown conceptually. Each

bar represents an individual tree in the ensemble, and the black “target” line is the true output

associated with a particular sample. In (b), the bars for each tree are positioned relative to the

sum of the preceding members. The blue line is the aggregate prediction of the ensemble — the

mean in (a), and the sum in (b).

powerful model. In a boosted forest (Friedman, 2001), each tree is trained to reduce the216

residual errors accrued by its predecessors. Figure 3(b) illustrates how the trees in a boosted217

forest work to correct the under- or overshoot of the sum of the previous trees’ predictions.218

3.2 Forest hyperparameters219

The training of both random and boosted forests is governed by several hyperparameters,220

tunable values chosen by the user. Most of these fall into one of two broad categories: those221

which set the size of the ensemble, and those which inject randomness into the training222

process. The former includes the number of trees in the forest and the maximum allowed223

depth of each tree. The latter includes the size of the subsampled dataset used to train each224

tree and the fraction of input features considered as potential splits at each node. Boosted225

forests also have a learning rate, a scalar less than unity multiplying the prediction of each226

constituent tree, which limits the rate at which the forest can “zero in” on the targets and227

helps prevent overfitting to the training data.228

Table S3 summarizes the hyperparameter values used in this study. They were chosen229

using cross-validation: for each candidate hyperparameter set, a model is trained several230

times with different subsets of the training data held out, and the parameter set that mini-231
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mizes the average out-of-set error is chosen. Hyperparameters were then kept constant for232

consistency across all experiments. We find that performance is robust to moderate changes233

in these hyperparameters.234

3.3 WaveNet as a benchmark235

We use the WaveNet neural network architecture, developed by Espinosa et al. (2022) to236

emulate AD99, as a benchmark against which to compare our forest emulators. The neural237

network features four shared fully-connected hidden layers followed by a branching structure238

with two independent fully-connected layers for each output pressure level. Our network239

has approximately 385,000 trainable parameters (the exact number depends on the input240

features chosen), roughly the minimum size found to be necessary by Espinosa et al. (2022)241

for successful coupled integrations. It is challenging to meaningfully compare parameter242

counts of neural networks with those of regression forests because their architectures differ243

so dramatically. The neural networks and regression forests we use have roughly comparable244

runtimes in coupled integrations, which is perhaps the more practically important metric of245

model complexity. Neither architecture was optimized for performance on our machine.246

Our approach differs from that of Espinosa et al. (2022) in that we use mean-square247

error as our loss function (instead of the log cosh loss) and we predict gravity wave drags at248

all 40 output levels (instead of predicting at the highest 33 levels and padding with zeros).249

We made these changes for the sake of simplicity and did not observe significant effects on250

network behavior. As with our forest emulators, we train one neural network to predict251

both zonal and meridional accelerations.252

3.4 Feature importance and SHAP values253

Because machine learning architectures can be fairly opaque, it is often difficult to254

assess whether a model has learned to use its input data in a physically plausible way.255

Moreover, even data-driven schemes that achieve low error on their training and test sets256

can behave unpredictably when coupled back to the atmospheric model. This suggests that257

parameterization design might be well-served by studying not just how highly a particular258

model scores, but also how it uses its data.259

Feature importance metrics attempt to understand the behavior of a machine learning260

model by quantifying how individual features affect model predictions. The SHAP (SHapley261
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Additive exPlanation) value (Lundberg & Lee, 2017), an adaptation of game-theoretic Shap-262

ley values (Shapley, 1953), is a metric of feature importance defined for arbitrary machine263

learning models. Given any function φ and a sample x, first consider264

ak(x) = E
zk

[
φ(z)

∣∣∣ zi = xi for all i ̸= k
]

(1)265

the average output of φ on inputs matching x except in the kth component. The expectation266

in (1) is the interventional expectation (Pearl, 2000; Janzing et al., 2020) which, to avoid267

mistaking correlations between components for patterns in the behavior of φ, breaks the268

dependence of the kth component on the others by averaging over the full distribution of269

zk found in the training dataset. The SHAP value of feature k is then defined as sk(x) ≡270

φ(x) − ak(x), the change in φ that results when xk is known exactly. Efficient algorithms271

exist for approximating ak(x), and by extension sk(x), for both regression trees (Lundberg272

et al., 2020) and neural networks (Shrikumar et al., 2017; Lundberg & Lee, 2017).273

SHAP values are local, in the sense that they are calculated for each input sample.274

In Section 5 we compute dataset-averaged absolute values of the SHAP values for a global275

measure of feature importance. Moreover, the SHAP value as described is defined for scalar-276

valued functions, but the parameterizations we consider in this work have vector-valued277

outputs; we calculate SHAP values for each output channel separately and examine how278

features vary in their importance to predictions of gravity wave drag at different vertical279

levels.280

3.5 Software implementation281

The random and boosted forests we use are built using the decision tree interface in the282

Python library scikit-learn (Pedregosa et al., 2011), and our neural networks use PyTorch283

(Paszke et al., 2019). To couple our emulators with MiMA, we use Forpy (Rabel, 2020),284

which allows Python functions to be called from the Fortran numerical solver.285

Support for multioutput regression, however, is limited in existing tree boosting li-286

braries. For scalar problems, boosting admits an optimization known as gradient boosting,287

but that formulation involves Taylor expansions in the output space and so becomes im-288

practical for multi-output target data. As such, we created Mubofo (muti-output boosted289

forests), a tree boosting library extending Scikit-learn and based on the train-on-the-residuals290

perspective of boosting schematized in Figure 3 (Connelly, 2023). Mubofo also implements291

the vector-valued Gini importance calculations described in Text S2.292
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4 Offline and online evaluation293

We first evaluate our emulators offline; that is, we examine their skill on the train-294

ing and test datasets described in Section 2.2, uncoupled from the atmospheric model that295

generated that data. We then discuss the emulators’ online performance — how the at-296

mospheric model behaves when coupled to a data-driven emulator instead of to AD99, as297

outlined in Section 2.3. Because parameterizations are developed with the goal of enhancing298

atmospheric models, online performance is of greater importance than offline error. How-299

ever, it is more difficult both to improve directly, because emulator training occurs offline,300

and to evaluate, because doing so requires computationally demanding integrations of the301

atmospheric model.302

4.1 Offline R2 scores303

The left panel of Figure 1 shows sample tropical zonal wind and temperature profiles304

passed by MiMA to the gravity wave scheme, and the right panel shows the gravity wave305

acceleration profiles as parameterized by AD99, one of each kind of regression forest emula-306

tor, and a neural network emulator. The AD99 profile exhibits local maxima just below the307

two maxima in the input wind profile, reflecting the deposition of momentum just below308

critical levels. The boosted forest and neural network emulators reproduce the shape of this309

profile, including the two maxima, although the neural network appears somewhat closer310

to the AD99 profile overall. The random forest, on the other hand, seems to smooth out311

many of the features of the target profile; this is unsurprising, since random forests have an312

intrinsic tendency to average.313

These anecdotal impressions of performance are borne out by a more global assessment314

of error relative to AD99. Figure 4 shows the three emulators’ coefficients of determination315

R2, the fraction of target variance accounted for by emulator output, as a function of ver-316

tical level (on the left) and latitude (on the right). The R2 score is unity for an emulator317

that explains the data exactly, zero for constant predictions of the target mean, and arbi-318

trarily negative as emulator performance degrades. Dashed lines indicate performance on319

the training data, solid lines on the test data unseen during training. All three emulators320

perform slightly better on the training data than the held-out test data, as is expected, but321

no emulator exhibits the large train-test gap characteristic of overfitting. Figure 4 shows322
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Figure 4. Offline R2 scores of three data-driven emulators on the training and test datasets.

Parentheses indicate the input features used by each model.

that the neural network has the best offline performance, closely followed by the boosted323

forest, with the random forest much worse than either.324

Performance tends to be better aloft than near the surface. In AD99, layers below325

321 hPa are sometimes below the tropopause-following source level and sometimes above it,326

depending on latitude, and emulator predictions are worse at these lower levels. Emulator327

error is also larger in the tropics, likely because the peak of the AD99 source spectrum328

switches there to following the mean flow at the source level, making the emulation task329

more complex. This degraded performance is not an artifact of sampling, because training330

samples were sampled weighted by grid box area, so that the tropics are well-represented in331

the training data.332

Following Espinosa et al. (2022), we train boosted forests on different combinations333

of input features to assess the utility of various physical variables. All forests used the334

hyperparameter choices described in Table S3. Figure 5 shows theR2 scores for these models.335

We observe that changing the input features does not result in significant performance336

increases or decreases, except that the forest that does not see latitude ϑ performs very337

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 5. As in Figure 4, but for boosted forests using different combinations of input features.

poorly at vertical levels which can be below the source level. Otherwise, the differences338

between particular boosted forests are smaller than those between boosted forests and the339

other architectures considered in this work. For comparisons between architectures, we340

use the boosted forest trained on wind, temperature, latitude, and surface pressure, as it341

outperforms the others by a slight margin in the tropics, where the GWP-driven QBO342

occurs. This is also the same feature set used by AD99.343

We performed a similar set of experiments with random forests. Again, their perfor-344

mance was largely unaffected by changing the input features, and all the random forests345

remained substantially worse than the boosted forests, as Figure 4 suggests. For this reason,346

the bulk of the analysis in the remainder of this work is focused on boosted forest emulators,347

with comparisons to random forests only when appropriate.348

4.2 Climatological biases349

Figure 6 shows the biases in zonal mean u and T relative to the AD99 control run of the350

coupled runs described in Section 2.3. The boosted forest shows the least bias overall. The351

random forest and neural network produce large biases mainly in the tropical stratosphere,352

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 6. Biases with respect to AD99 integrations in zonal mean u (a-c, left column) and T

(d-f, right column) from coupled integrations of the three emulators shown in Figure (4). Stippling

indicates regions where bias is significant at the 95% level.
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Figure 7. QBOs from the final twelve years of integrations of MiMA coupled to AD99 (top

row) and the three data-driven emulators from Figure 4 (next three rows). The control climate

integrations are on the left, the 800 ppm CO2 runs in the middle, and the 1200 ppm CO2 runs on

the right.

where variability from the QBO dominates, and to a lesser extent near the poles. In particu-353

lar, the tropospheric jet structure is emulated well and free of systematic bias. Remarkably,354

the random forest, which exhibited much poorer offline performance in Figure 4, runs stably355

online without significantly altering the zonal mean climate in the troposphere.356

The zonal-mean biases were similar in the coupled runs with increased atmospheric357

carbon dioxide. The remainder of this section will focus on climate phenomena that are358

particularly dependent on the particular gravity wave parameterization: the QBO and the359

occurrence of sudden stratospheric warmings (SSWs).360

4.3 The Quasi-Biennial Oscillation361

Atmospheric models generally need parameterized gravity wave drag to represent the362

QBO in the tropical stratosphere (Anstey et al., 2022), and so the emulators’ skill at re-363
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Figure 8. Periods (left) and amplitudes (right) of QBOs driven by AD99 and three emulators

in integrations with three values of CO2 concentration. Periods are determined by the dominant

Fourier mode at 10 hPa, with uncertainty given by the half-width of the spectral peak around that

mode. Amplitudes are the standard deviation at 10 hPa, with uncertainty determined from the

95% confidence intervals as calculated by bootstrapping.

producing the statistics of the QBO simulated by AD99 is a key metric of their online364

performance. For simplicity, we will refer to any simulated oscillation in the tropically- and365

zonally-averaged zonal wind as a QBO, even when the period is no longer “quasi-biennial”.366

Figure 7 shows the QBO time series from MiMA integrations coupled to AD99 and the three367

emulator architectures. In all three carbon scenarios, AD99 and each of the three emulators368

produce a QBO. Especially in the high-carbon integrations, though, these oscillations vary369

both qualitatively and quantitatively. The period and amplitude response of the QBO for370

each parameterization is shown in Figure 8.371

The period of the QBO driven by AD99 increases monotonically with CO2 concen-372

tration. The sign of this response is captured by the boosted forest and neural network373

emulators, though the boosted forest periods are biased low and the neural network signif-374

icantly overshoots the AD99 period in the 1200 ppm case. (Note, however, that the QBO375

in Figure 7i is not nearly as divergent from the AD99 oscillation as this calculation might376

suggest.) The random forest, by contrast, drives a QBO with a significantly longer period in377

the control 390 ppm CO2 scenario, and the period decreases with increasing carbon dioxide.378

This failure to replicate the behavior of AD99 is perhaps unsurprising, given the random379

forest’s relatively poor offline performance (Figure 4).380
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Figure 9. Sudden stratospheric warming frequencies from the MiMA runs described in Sec-

tion 2.3. SSWs are identified using the criterion of Butler et al. (2017), based on sign changes in

the zonal mean zonal wind at 60◦N and 10 hPa. The uncertainties are the 95% confidence intervals,

as calculated by bootstrapping winters and counting SSWs in the subsampled populations. This

approach assumes that SSWs in different winters are independent.

The amplitude of the reference QBO decreases in response to increased CO2. All three381

emulators show at least broadly similar behavior (Figure 8(b)), though the boosted forest382

significantly overestimates the response in the 800 ppm CO2 case, and the neural network383

amplitudes are biased low. It is of note that the random forest, heretofore the worst of the384

three emulators, is the most able to reproduce the correct QBO amplitudes across all three385

integrations.386

4.4 Sudden stratospheric warmings387

Sudden stratospheric warmings (SSWs) are abrupt increases in the temperature of388

the wintertime polar stratosphere accompanied by a reversal in the polar vortex. Their389

occurrence is governed in part by gravity wave propagation — either directly through wave-390

driven momentum flux (Song et al., 2020) or indirectly through moderation by the QBO391

(Butler et al., 2017) — and their frequency thus provides an additional statistic with which392

to assess the emulators’ online performance. Figure 9 shows the SSW frequencies for AD99393

and the three emulators at three CO2 concentrations.394

In the 390 ppm CO2 integrations, the random forest appears to best reproduce the SSW395

frequency, but the uncertainties are large and the confidence intervals for all three emulators396

overlap considerably with that of AD99. When the CO2 concentration is raised to 800 ppm,397
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AD99 produces SSWs more frequently. This response is not well captured by any emulator:398

none of them demonstrates a large response relative to the uncertainties. However, in the399

more extreme 1200 ppm CO2 runs, all three emulators capture the large decrease in SSW400

frequency exhibited by AD99.401

5 Feature importance analysis402

The offline and online results presented in Section 4 show that the neural network403

slightly outperforms the boosted forest offline, performs comparably online in the control404

climate, and is somewhat better at reproducing the AD99 response to the 800 ppm CO2405

scenario. The final goal of this study is to use the interpretability tools laid out in Section 3.4406

to calibrate the online behavior of regression forest models towards more desirable outcomes.407

5.1 Computed SHAP values408

To further analyze the behavior of our emulators, we calculate SHAP values (Sec-409

tion 3.4), a measure of feature importance, the relative importance a model ascribes to410

various input features in making its predictions. Figure 10 shows dataset-averaged SHAP411

values for the three emulators in Figure 4 and for the AD99 parameterization itself. Each412

panel shows the importance of input features from all levels (wind and temperature impor-413

tances are summed per level) to predictions at a single level. Note that SHAP values have414

the same units as the parameterization outputs, which in this case are standard deviations415

of the gravity wave acceleration at the prediction level.416

The SHAP profiles for AD99, the boosted forest, and the neural network show prefer-417

ential use of input information from at and just below the prediction level. This pattern418

matches our physical intuition, given that AD99 simulates strictly upward propagation of419

waves, and indicates that the boosted forest and neural network have learned to make pre-420

dictions according to the “physics” encoded in AD99. (The importance maxima at levels421

immediately above the prediction level do not contradict this characterization: AD99 cal-422

culates drags at level interfaces before interpolating to full levels, so that information from423

one level higher than the prediction level is used.)424

The random forest profiles, however, are much more muted. This suggests that the425

random forest does not identify the set of features on which the drag at each level depends,426

reflecting a failure to learn the physical structure of the problem and at least partially427
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Figure 10. Test dataset-averaged absolute SHAP values for predictions at several vertical levels

for AD99 and the three emulators in Figure 4. Each input pressure level includes the importances

of both wind and T features. The prediction level is highlighted in gray.
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explaining the poor R2 scores in Figure 4. The emulators with high R2 scores, the boosted428

forest and neural network, use the input features almost identically to AD99 — as opposed429

to, say, achieving good performance by relying on spurious correlations between features.430

Of additional interest is the peak in the AD99 importance profile near 200 hPa in431

Figure 10(c), showing that even for predictions aloft, AD99 makes use of layers near the432

tropopause. Indeed, in AD99 the tropical phase speed spectrum is set by the source level433

winds, and many waves are immediately filtered at the tropopause. All three emulators434

appear to under-emphasize input information near the source level.435

For the random and boosted forests, we computed Gini importances, an additional436

metric of feature importance defined only for regression tree-based architectures, and found437

them to be in good qualitative agreement with the SHAP values shown here. See Text S2438

and Figure S4 for details. We therefore believe the conclusions about the models considered439

here to be reasonably robust to feature importance method.440

5.2 SHAP-informed retraining441

Although Figure 10 indicates that the boosted forest and neural network use wind and442

temperature information in a physically plausible way, it does not explain the differences in443

online behavior observed in Figures 7 and 8. The left panel of Figure 11 shows the SHAP444

importance of latitude to all prediction levels for AD99 and the three emulators. AD99 has a445

large maximum in latitude SHAP value near the tropopause. Strikingly, the neural network446

values match this maximum quite closely, while the boosted forest considerably under-447

emphasizes latitude in this region of the atmosphere. (Further aloft, all three emulators448

have latitude SHAP values less than those of AD99.)449

This result suggests that underuse of latitude might be a key factor differentiating the450

boosted forest from the neural network. Moreover, one might wonder if a boosted forest451

forced to pay closer attention to latitude might have better online behavior. In particular,452

the distribution of input latitudes is necessarily fixed, while the distribution of input flow453

variables is subject to shift under climate perturbations.454

To test this, we trained a boosted forest with identical hyperparameters to the one455

considered thus far; however, we added the latitude of each training sample as an additional456

target. The idea is that, since latitude is now both an input and an output, the input457
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Figure 11. Test dataset-averaged absolute SHAP importance of latitude to parameterization

outputs at each vertical level for AD99, the three emulators from Figure 4 (solid lines), and the

boosted forest retrained as described in Section 5.2.
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Figure 12. As in Figure 8, but including the boosted forest trained as described in Section 5.2.

latitude should be more useful in partitioning the training output vectors into low-impurity458

subsets (see Text S1). Latitude should therefore be selected at more important nodes in459

the constituent trees. We can multiply the latitude values added as targets by a constant460

(introducing one new hyperparameter) to control the strength of this effect. At prediction461

time, we simply discard the predicted latitude and retain only the predicted drags.462

The boosted forest trained in this manner achieves R2 scores (not shown) essentially463

indistinguishable from the boosted forest in Figure 4. Nor was the use of level-specific infor-464

mation (as in Figure 10) significantly different from the original boosted forest. However,465

the dashed line in Figure 11 demonstrates that this training procedure produces a forest466

for which latitude is two to three times as important throughout the vertical extent of the467

atmosphere. More significantly, Figure 12 shows that when coupled to MiMA, the retrained468

boosted forest drives a QBO with period and amplitude closer to those of AD99 then the469

original forest in both the 390 ppm and 800 ppm CO2 scenarios. The QBO statistics in470

the 1200 ppm integration remain poor, suggesting that this extreme carbon perturbation is471

simply beyond the ability of this boosted forest architecture to generalize.472

6 Discussion473

In this study, we used boosted and random forests to emulate a gravity wave parameter-474

ization, performed offline and online evaluations of emulator performance, and investigated475

whether emulator use of input features respected known physical properties of the data. To476

our knowledge, this work represents the first use of boosted forests in the design of param-477

eterizations for climate models. Boosted forests are not uncommon in the wider machine478
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learning literature; for example, they are often used in winning submissions to competitions479

(Bojer & Meldgaard, 2021). But while random forests have been employed in several param-480

eterization studies (Belochitski et al., 2011; O’Gorman & Dwyer, 2018; Yuval & O’Gorman,481

2020), boosted forests have not, perhaps because of the absence of native support in boosting482

libraries for the multioutput problems that abound in climate modeling.483

We have shown that boosted forests significantly outperform random forests accord-484

ing to almost every metric, even with a relatively simple implementation of multioutput485

boosting that lacks much of the flexibility of the optimized boosting libraries used for scalar486

problems. Boosted forests may therefore be a valuable and yet-underused tool as climate487

models continue to move towards incorporating data-driven parameterizations, especially488

since they were as skillful, or nearly so, as neural networks. In particular, even though a489

boosted forest makes inferences based exclusively on outputs in the training data, ours was490

able to generalize to out-of-sample conditions equally as well as the neural network bench-491

mark: both schemes performed well under moderately enhanced CO2, but struggled under492

our most extreme scenario. Out-of-sample generalization is often challenging for data-driven493

methods, but recent work by Sun et al. (submitted) suggests that transfer learning may be494

a solution if one can provide a small amount of high-quality data from the new regime —495

for example, data from a high-resolution simulation under increased CO2.496

We further interrogated our data-driven schemes with methods from interpretable ma-497

chine learning to quantify how they used input features to make predictions. While the498

Gini importance is a natural interpretability metric for regression forests (Text S2), we499

found that it provided nearly the same information (Figure S4) as SHapley Additive ex-500

Planation (SHAP) analysis (Lundberg & Lee, 2017), a method-agnostic approach that can501

be used on any ML scheme and even on the original physics-based parameterization. The502

skillful boosted forest and neural network emulators exhibited SHAP values nearly matching503

those of AD99, much more closely than did the under-performing random forest (Figure 10).504

For the machine learning architectures considered in this work, then, emulation skill appears505

to go hand in hand with capacity to learn elements of the spatial structure of the problem.506

This observation suggests that these kinds of data-driven models may be able to infer similar507

structures from more realistic data sources, for which the true SHAP values will of course508

be unavailable.509
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Moreover, the analysis in Section 5.2 demonstrates the utility of SHAP analysis for510

understanding and improving online behavior beyond more common error metrics like R2
511

scores. The offline errors in Figure 4 showed the boosted forest performing worse than the512

neural network, and the QBO statistics in Figure 8 confirmed the forest to be less successful513

online under certain scenarios. Only the SHAP analysis culminating in Figure 11, though,514

provided actionable information, informing us that the boosted forest was not sufficiently515

taking into account latitudinal variation at prediction time. This informed a training proce-516

dure to improve the online behavior. Our approach remains somewhat ad hoc: the decision517

to focus on the input latitude was made by eye, and there may be superior ways to constrain518

forests to emphasize given input features. Nonetheless, we believe this result to be a useful519

preliminary towards calibrating the online behavior of data-driven parameterizations that520

may lack the explicit parameters used to tune physics-based schemes.521

Finally, from a practical standpoint, multioutput boosted forest libraries like the one522

implemented here will need to be made more efficient and self-contained if they are to provide523

a competitive alternative to neural networks in climate research. We found anecdotally that524

boosted forests constructed with only a few deep trees followed by many much shallower ones525

could perform nearly as well as, and considerably faster than, the constant-depth forests526

used here, though more investigation is required to fully explore the interplay between forest527

size and skill.528

7 Data Availability Statement529

The code used to run the experiments in this work is available, with documentation, at530

https://github.com/dsconnelly/willow. The random and boosted forests were trained531

using Mubofo (Connelly, 2023), a Python package maintained by author D. S. Connelly and532

available through Python Package Index (PyPI) at https://pypi.org/project/mubofo.533

The source code may be found at https://github.com/dsconnelly/mubofo and is dis-534

tributed under the BSD-3-Clause license.535

Mubofo is built around scikit-learn (Pedregosa et al., 2011), and the neural network was536

trained using PyTorch (Paszke et al., 2019). The SHAP values were computed with the shap537

Python package (Lundberg & Lee, 2017) available at https://github.com/shap/shap. The538

idealized atmospheric model MiMA is described in Jucker and Gerber (2017) and Garfinkel539

et al. (2020) and is available at https://github.com/mjucker/MiMA. The coupling interface540
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Forpy (Rabel, 2020) is available at https://github.com/ylikx/forpy. The authors are541

not involved with the maintenance of any of these software packages.542
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