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ABSTRACT

As the planet warms, climate models predict that rain will become heavier but less frequent and that the

circulation will weaken. Here, two heuristic models relating moisture, vertical velocity, and rainfall distri-

butions are developed—one in which the distribution of vertical velocity is prescribed and another in which it

is predicted. These models are used to explore the response to warming and moistening as well as changes in

circulation, atmospheric energy budget, and stability. Some key assumptions of the models include that

relative humidity is fixed within and between climate states and that stability is constant within each climate

state. The first model shows that an increase in skewness of the vertical velocity distribution is crucial for

capturing salient characteristics of the changing distribution of rain, including the muted rate of mean pre-

cipitation increase relative to extremes and the decrease in the total number or area of rain events. The second

model suggests that this increase in the skewness of the vertical velocity arises from the asymmetric impact of

latent heating on vertical motion.

1. Introduction

Changes in rain are inexorably tied to changes in at-

mospheric circulation. In response to global warming,

climate model projections show an increase in global-

mean precipitation, the rate of which is in balance with

the change in atmospheric radiative cooling (O’Gorman

et al. 2012; Pendergrass and Hartmann 2014a). This rate

of increase, 1%–3% per degree of warming across cli-

mate models, is smaller than the rate of increase of

moisture in the atmosphere, which roughly follows sat-

uration vapor pressure at ;7%K21 (Held and Soden

2006). The difference between the rates of increase of

moisture and precipitation with warming implies a

slowing of the atmospheric overturning circulation

(Betts 1998). The weakening circulation in climate

model projections manifests as a decrease in spatial

variance of convective mass flux (Held and Soden 2006)

and the Walker circulation (the antisymmetric compo-

nent of variance of 500-hPa vertical velocity in the

tropics; Vecchi and Soden 2007).

Along with changes in circulation, climate models

project substantial changes in the distribution of rainfall,

as shown in Fig. 1. The rain frequency distribution

(Fig. 1a) shows how often it rains at any particular rain

rate. It is displayed on a logarithmic rain-rate scale in

order to accommodate the full range of rain rates that

can be encountered, which encompasses orders of

magnitude. The rain amount distribution (Fig. 1b) shows

how much rain falls at a particular rain rate. These cal-

culations are based on the mean of models from phase 5

of the CoupledModel Intercomparison Project (CMIP5;

Taylor et al. 2012) and are described in more detail in

Pendergrass and Hartmann (2014b). Figures 1c and 1d

show the multimodel mean changes in the rain fre-

quency and rain amount distributions in response to a

doubling of carbon dioxide in a scenario where carbon
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dioxide concentrations increase by 1% each year. The rain

frequency response to warming (Fig. 1c) is an increase in

days with heavy rain, a larger decrease in days with mod-

erate rain, a small (statistically insignificant) increase in

days with light rain, and a small (statistically significant)

increase in the number of dry days (noted at the top left of

Fig. 1c). The rain amount response (Fig. 1d) is an increase

in rain falling at heavy rain rates and a smaller decrease in

rain falling at moderate rain rates, constituting an increase

in the total amount of precipitation.

Pendergrass and Hartmann (2014c) found that these

changes in the distribution of rainfall in response to

warming (as well as those arising in response to El Niño
and La Niña phases of ENSO) in models can be well

described by two empirically derived patterns, denoted

the ‘‘shift’’ and ‘‘increase’’ modes, which are illustrated

in Fig. 2. Each mode describes a simple adjustment to

the climatological distribution of rain. A combination of

the shift and increase modes (chosen with an algorithm

to optimize the fit to the change in rain amount distri-

bution) captures most of the response in most climate

model simulations of global warming and the entire

change in some models.

The ‘‘increase’’ mode (Figs. 2a,b) characterizes an

increase in the frequency of rain by the same fraction at

all rain rates. The bell shape of this mode simply follows

the climatological distribution of rain frequency. While

the change in rain amount is characterized by a similar

bell-shaped pattern, it occurs at higher rain rates (Fig. 2b).

The total amount of rain is the product of the rain fre-

quency and rain rate, such that an increase in rain fre-

quency at higher rain rates has a larger impact on the total

precipitation than it does at lower rain rates. An increase

in rain frequency implies a reduction in the number of dry

days. In the global mean, it rains about half of the time,

such that a 1% increase at all rain rates is associated

with a 0.5% reduction in dry days.

FIG. 1. The CMIP5 multimodel mean distributions of daily

(a) rain frequency (with dry-day frequency at top left) and (b) rain

amount, during the first 10 yr of 1pctCO2. The response of (c) rain

frequency and (d) rain amount to increasing carbon dioxide, cal-

culated as the difference between the 10 yr at the time of carbon

dioxide doubling and the first 10 yr and normalized by the change in

global-mean surface temperature. Change in dry-day frequency

(%K21) is noted in the top-left corner of (c). Error intervals are

the 95% confidence limits according to a Student’s t test. As the

distributions are plotted on a logarithmic scale, they are weighted

by the rain rate r so that the area under the curve accurately rep-

resents the contribution of each rain rate to the total integral.

Following Pendergrass and Hartmann (2014b,c), though the

r-weighting is implicit to the procedure described there.

FIG. 2. The rain (left) frequency and (right) amount responses to

(a),(b) an increase mode of 0.9% (purple), (c),(d) a shift mode of

3.3% (turquoise), (e),(f), a shift mode of 3.3% and increase mode

of 0.9% (magenta), and (g),(h) equal magnitude shift and increase

of 3.3% (orange). The color scheme corresponds to these modes

throughout the paper. The initial distribution is shown in Fig. 3.
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The ‘‘shift’’ mode (Figs. 2c,d) characterizes a move-

ment of the distribution of rain to higher rain rates but

with no net increase in the total rain amount. It is de-

fined as a shift of the rain amount distribution (Fig. 2d);

the corresponding change in the rain frequency distri-

bution can also be obtained (Fig. 2c). A larger decrease

in the frequency of light rain events is needed to offset

the smaller increase in the frequency of strong rain

events on total precipitation; hence, the shift mode is

associated with an increase in the number of dry days.

For a 1% increase in the shift mode, the total number of

dry days increases by about 0.5%.

Pendergrass and Hartmann (2014b) determined that

the shift and increase mode magnitudes that optimally

capture the change in the multimodel mean rain amount

distribution in Fig. 1d are a shift mode of 3.3%K21 and

an increase mode of 0.9%K21. Figures 2e and 2f show

the change in rain frequency and amount distributions

for this combination of shift and increase modes. The

response of the shift mode is larger than the increase

mode, such that there is a modest increase in the fre-

quency of dry days.

Not all of the change in the distribution of rain in

climate models is captured by the shift and increase

modes. Pendergrass and Hartmann (2014c) identified

two additional aspects of the changing distribution of

rain common to many models: the light rain mode and

the extreme mode. The light rain mode is the small in-

crease in rain frequency just below 1mmday21 visible in

Fig. 1c, also evident in Lau et al. (2013). The extreme

mode represents additional increases in rain at the

heaviest rain rates, beyond what is captured by the shift

and increase modes. It is crucial for capturing the re-

sponse of extreme precipitation to warming.

Changes in moisture, circulation, and the distribution

of rain in response to warming are related. Indeed, the

changes in the intensity of extreme rain events in climate

model projections of global warming can be linearly

related to changes in moisture and vertical velocity in

most models and regions (Emori and Brown 2005;

O’Gorman and Schneider 2009; Chou et al. 2012). This

motivates us to consider whether we can understand the

changing distribution of rain in terms of the changes in

moisture and vertical velocity distributions, constitut-

ing a physically based, rather than empirically derived,

approach.

One might assume that changes in the distribution of

rain are complex. The distribution of rain (particularly

the global distribution) is generated by a number of

different types of precipitating systems, each of which is

driven by somewhat different mechanisms and might

respond differently to external forcing. For example, it

would not be surprising if midlatitude cyclones and

tropical convection responded differently to global

warming. On the other hand, we expect many aspects of

the response to warming to be fairly straightforward—

warming along with moistening at a relative humidity

that stays constant on surfaces of constant temperature

(Romps 2014).

In this study, we approach the relationships among

changes in moisture, vertical velocity, and rain by ex-

amining the response to straightforward changes of

simple statistical distributions.We develop two heuristic

models that predict the distribution of rain from mois-

ture and vertical velocity distributions. We will see that

despite the potential for complexity among these re-

lationships, we can recover many aspects of the changes

in rainfall and vertical velocity we see in climate models

in an idealized setting.

In section 2, we introduce the first model, in which

distributions of moisture and vertical velocity are pre-

scribed. We use the model to explore how the distribu-

tion of rain responds to warming and moistening and to

changes in the strength and asymmetry (or skewness) of

the vertical velocity distribution. Then, in section 3, we

introduce a second model that predicts the vertical ve-

locity distribution in order to understand its changes in

concert with those of the distribution of rain. In section

4, we show that climate model simulations also have

increasing skewness of vertical velocity with warming.

Finally, we consider the implications of the increasing

skewness of vertical velocity on convective area in sec-

tion 5 and conclude our study in section 6.

2. The first model: Prescribed vertical velocity

We know rain is a result of very complex processes,

many of which are parameterized rather than explicitly

modeled in climate models. At the most basic level, rain

is regulated by two processes: 1) the moisture content,

which is tied to the temperature structure, assuming

constant relative humidity, and 2) the magnitude of

upward vertical velocity. Instead of considering vari-

ability in space, consider a distribution that captures the

structure of all regions globally. Furthermore, neglect

concerns about the vertical structure of the motion or

the structure of the atmosphere and consider only the

vertical flux of moisture through the cloud base.

The key—and gross—simplification of this model is

that we will assume that the vertical velocity is inde-

pendent of the temperature and moisture content, so

we can model these as two independent distributions.

We know this is not the case—upward velocity is often

driven by convection, which occurs where surface tem-

perature is warm—but for now we will see what insight

can be gleaned with this assumption.
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a. Model description

Our first model is driven by two prescribed, inde-

pendent, Gaussian (normal) distributions: one for tem-

perature N(T, sT), where T is the mean temperature

and sT is width of the temperature distribution, and

another for vertical velocity N(w, sw), where w is the

mean vertical velocity (equal to zero when mass is

conserved) and sw is the width of thew distribution. The

temperature distribution, with the assumption of con-

stant relative humidity, in turn gives us the moisture

distribution. We calculate moisture q:

q(T)5 q
0
e0:07T , (1)

where q0 is chosen so that q(T) is equal to its Clausius–

Clapeyron value at T 5 287K. This equation is very

similar to Clausius–Clapeyron, except that here

dq/dT5 7%K21 exactly. The implied relative humidity

is fixed at 100%. The choice of 100% relative humidity is

arbitrary, but any nonzero choice that is held constant

will result in the same behavior.

We suppose that it rains whenever vertical velocity w

is positive (upward), with a rain rate equal to the product

of themoisture, vertical velocity, and air density ra (held

constant at 1.225 kgm23, its value at sea level and 158C):

r(q,w)5

�
r
a
wq, w. 0

0, w# 0.
(2)

This is analogous to saying that the rain rate is equal to

the flux of moisture across the cloud base. While this is a

gross simplification, it would hold if the column were

saturated, the temperature structure fixed, and the air

lifted to a level where the saturation specific humidity is

effectively zero. In this limit, any moisture advected up-

ward will lead to supersaturation and rain from above.

Neglecting the impact of condensation on the temperature

is a similarly coarse approximation as our assumption that

the temperature and vertical velocity are independent.

The rain frequency distribution is obtained by in-

tegrating across the distributions ofT [which determines

q by Eq. (1)] and w:

p(r)5

ð‘
0

ð‘
2‘

ð‘
2‘

d(r2 r
a
wq)p(T)p(w) dT dwdr , (3)

where p(T) and p(w) are Gaussian probability density

functions and d is a Dirac delta function. The rain

amount distribution is then given by the following:

P(r)5 rp(r) . (4)

In practice, p(r) and P(r) are computed over a discrete set

of bins. Because the rain rate varies over several orders of

magnitude, thebins are spaced evenly on a logarithmic scale

for proper sampling; the bin width defined in logarithmic

space isD lnr5Dri/ri, where ri is the rain rate andDri is the
linear bin width for the ith bin. We then work with the

frequency of rain events corresponding to each bin p(ri)Dri.
To maintain the property that the area under the displayed

distribution curves accurately represents the contribution of

each rain rate to the total integral when displayed on a

logarithmic scale, our plots show rip(ri)5p(ri)Dri/D lnr.

Last, we must specify the parameters governing the

temperature and vertical velocity distributions, which are

listed in Table 1 for reference. For temperature (shown in

Fig. 3a) we take T to be 287K and its standard deviation

sT 5 16 K, both chosen to match the surface air tempera-

ture distribution in a climate model. The vertical velocity

distribution (shown in Fig. 3b) must have a mean w5 0 if

mass is to be conserved.Given the temperature distribution

above, the standard deviation of w will ultimately set the

TABLE 1. Initial parameter choices for the first model.

Variable Value Description

T 287K Mean temperature

sT 16K Width of temperature distribution

w 0 Mean vertical velocity w

sw 1mm s21 Width of w distribution

FIG. 3. The distributions driving the first model, where vertical

velocity is prescribed: (a) temperature and moisture and (b) vertical

velocity (skewness is noted in the top right corner). The resulting

distributions of (c) rain frequency (dry frequency, when rain

rate is equal to zero, is noted in the bottom-left corner) and

(d) rain amount.

6448 JOURNAL OF CL IMATE VOLUME 29



total precipitation. Thus, we sought to constrain its value so

as to capture the total precipitation in climate models and

observational datasets (see Pendergrass and Hartmann

2014c) while at the same time being consistent with the

vertical velocity distribution in climate models. Studies

such as Emori and Brown (2005) show that rain fre-

quency changes are linearly related to changes in

moisture and 500-hPa vertical velocity in many climate

models for most regions. While vertical velocity at

cloud base rather than 500 hPa would be more closely

physically related to our conceptual model, it is not

archived for these climate model integrations.

The rain frequency distribution (shown in Fig. 3c) is

calculated numerically following the description in appen-

dix A. It is dry exactly 50% of the time, since the vertical

velocity distribution is symmetric about zero. The peak

of the rain frequency distribution occurs at just under

10mmday21. The rain amount distribution (Fig. 3d) shows

how much rain falls in each rain-rate bin. The peak of the

rain amount distribution occurs at a rain rate about an order

ofmagnitude larger than for the rain frequency distribution.

These distributions resemble those in observational

datasets and climate models to the correct order of magni-

tude—compare to Figs. 1a and 1b and Pendergrass and

Hartmann (2014c)—despite the crude assumptions of our

model. The main deficiency of our model compared to cli-

matemodels is a lackofprecipitationat light rain rates anda

corresponding overestimation of dry-day frequency. How-

ever, climate models underestimate the dry-day frequency

by about a factor of 2 compared toGPCP1DDandTRMM

3B42 merged satellite–gauge gridded daily observational

datasets (Pendergrass and Hartmann 2014c). The implica-

tions of this discrepancy on the rain amount distribution are

nonetheless small because light rain contributes less than

heavy rain does to the total precipitation so that distribution

of rain amount appears better than rain frequency qualita-

tively (cf. Figs. 1b and 3d).

The goal in developing this toy model is to explore what

happens in response to perturbations: warming and moist-

ening,weakeningof the circulation, and introducing skewness

to the vertical velocity distribution. We consider these next.

b. Response to warming and moistening

We approximate warming by simply shifting the mean of

the temperature distribution T 1K higher. We keep sT

constant, assuming no change in the variance of temperature.

The moisture distribution adjusts accordingly. We maintain

the samewdistributionandcalculate thedistributionof rain in

the warmed climate. The differences between the distribu-

tions of rain frequency and amount in the warmed and initial

climates are shown in Figs. 4a–c. There is no change in the

total frequency of rain, and the total amount of rainfall in-

creases by 7%K21, exactly following the change in moisture.

The rainfall distribution response to warming is

equivalent to moving the rain frequency distribution to

the right by exactly 7%K21, or having equal shift and

increase modes of 7%K21 (the fitted shift and increase

modes are listed in Table 2), as in Figs. 2g and 2h. In

contrast to this warming experiment, in climate model

simulations of global warming the shift mode response is

larger than that of the increase mode, and total precipi-

tation increases more slowly than moisture. This exposes

a flaw: circulation also adjusts to changes in climate, which

is not captured by this first experiment. In climate model

projections, circulation adjusts to satisfy the energetic con-

straints of the climate system, including the constraint that

precipitation (in the global mean) can only increase as

much as atmospheric radiative cooling and sensible heat

flux allow (e.g., Allen and Ingram 2002).

c. Response to weakening circulation

A weakening of the atmospheric overturning circu-

lation can be effected in our model by reducing the

width of the vertical velocity distribution sw. For our

second experiment, we decrease the standard deviation

ofw by 4%, using the initial (not warmed) distribution of

temperature and moisture. The change in the distribu-

tion of rain is shown in Figs. 4d–f.

Again, there is no change in the dry frequency, and the

total amount of rainfall decreases by 4%, the same amount

that we weakened the width of the vertical velocity dis-

tribution by. Decreasing the width of the vertical velocity

distribution results in a shift of the rain frequency distri-

bution to lower rain rates. In fact, narrowing the w distri-

bution by 7% would exactly cancel the effect of warming

by 1K. We can understand this by considering Eq. (2) or

(3); warming by 1K increases q by 7%, whereas widening

the vertical velocity distribution increases w by 7%. The

effect of either change on r is the same.

We have just seen that neither warming nor changing the

strength of the circulation affects the dry frequency or the

symmetry between the rates of changeofmeanandextreme

rainfall. Changes analogous to those we see in climate

model simulations thus cannot result fromeitherwarming at

constant relative humidity or weakening circulation alone.

But what if the circulation becomes more asymmetric?

d. Response to changing skewness of vertical velocity

The first moment of the vertical velocity distribution, its

mean,must be fixed at zero tomaintainmass conservation.

We have just seen that changing the second moment

(standard deviation or variance) does not cause the

changes in the distribution of rain that we see in climate

models. We now turn to the third moment, skewness,

which measures the asymmetry of a distribution. Skew-

ness, a key quantity, is attended tomorewidely in the parts
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of atmospheric sciences dealing with turbulence, like

boundary layer meteorology. It has also received some

limited attention in climate recently. Monahan (2004)

discusses skewness of low-level wind speed arising from

surface drag. Luxford and Woollings (2012) discuss how

skewness arises in geopotential height from kinematic

fluctuations of the jet stream. Sardeshmukh et al. (2015)

incorporate skewness into a nonlinear model for atmo-

spheric fields including precipitation. In particular, they

highlight the skewness in the vertical velocity field.

Skewness can arise in vertical motion from the

asymmetric effect of latent heating. To visualize this

effect, picture a developing thunderstorm. The cumulus

cloud grows because an updraft is heated when water

FIG. 4. Experiments with the first model. (left) Prescribed vertical velocity distribution, with the initial distribution in the gray-dashed

line and each experiment’s distribution in solid black (skewness noted at top right of each panel). (center) Predicted rain frequency

response (change in dry frequency noted at center left). (right) Predicted rain amount response in black, with the fitted shift-plus-increase

response in color. Colors correspond to Fig. 2; the magnitude of the fitted shift and increase modes and their errors are listed in Table 2.

Each row is one experiment: (a)–(c) warm, (d)–(f) weaken the vertical velocity distribution, (g)–(i) skew the vertical velocity distribution,

( j)–(l) warm and skew, and (m)–(o) warm while weakening and skewing the vertical velocity distribution.
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vapor condenses, sustaining or even strengthening the

updraft and eventually resulting in rainfall. Over the life

of the thunderstorm, some of this rainfall will reevapo-

rate, but there will be a net latent heating of the atmo-

sphere due to the formation of this thunderstorm equal

to the amount of rainfall that reaches the ground. There

is no corresponding effect of latent heating on subsiding

air; it merely warms adiabatically as it sinks.

To incorporate skewness into the vertical velocity

distribution, we draww from a skew-normal distribution

generated following Azzalini and Capitanio (1999), in-

stead of from a normal distribution as before. A skew-

normal distribution has 3 degrees of freedom, which

determine its mean, variance, and asymmetry.When the

asymmetry is zero, the skew-normal distribution be-

comes normal. We adjust the skew-normal distribution

so that the mean is always zero to maintain mass con-

servation, and we maintain a constant variance of the w

distribution to eliminate the effects of changing circu-

lation strength. The resulting distribution of w and the

response in rain frequency and amount distributions to a

0.2 increase in skewness are shown in Figs. 4g–i.

The responses of the rain frequency and amount dis-

tributions to increasing skewness of the vertical velocity

have some intriguing features. There is a notable de-

crease in the frequency of rain for moderate rain rates

(Fig. 4h), but the total amount of rain remains essen-

tially constant owing to a slight increase in the frequency

of higher rain rates (Fig. 4i). This strongly resembles the

shift mode. Themagnitude of the strongest updrafts also

changes little. Increasing skewness without conserving

the mean of w would increase the strength of the

strongest updrafts, but the shift of the distribution to

maintain mass continuity compensates for this.

To move toward the response of precipitation to

global warming in climate models, we simultaneously

warm and increase the skewness of the vertical velocity

distribution, shown in Figs. 4j–l. The response of the rain

frequency and amount distributions to warming and

skewing has all the features seen in climate models:

a decrease in the total rain frequency and in the fre-

quency of rain falling at moderate rain rates, along with

an increase in rain amount focused at the heaviest rain

rates. Increasing the skewness of the vertical velocity

distribution effects crucial components of the change. It

decreases the total frequency of rain events, breaks the

symmetry between the changes in mean and extreme

rainfall, and allows us to change the magnitude of the

shift mode without changing the increase mode.

To fully capture the changes we see in climate model

simulations, we weaken the distribution of vertical velocity

(decreasesw) while simultaneously increasing its skewness

and increasing T, shown in Figs. 4m–o. Here we see many

of the same features as before, but now we also have the

decrease in mean rainfall that arises from the weakening

circulation, giving us shift and increase modes of roughly

the same magnitude as we see in climate models.

To recap, we have shown that warming (increasing T)

results in shift and increasemodes of equal magnitude, while

increasing the skewness of the vertical velocity distribution

TABLE 2. The magnitude of fitted shift and increase modes along with their error (the magnitude of the response that the fitted shift-

plus-increase response fails to capture) for each of the experiments shown and discussed here. The precipitation response to a transient

CO2 increase in climatemodels is shown for theCMIP5multimodelmean aswell as for oneGCM,MPI-ESM-LR,which is fit the best of all

the CMIP5 models (see Pendergrass and Hartmann 2014b for details). The Model 1 experiments are shown in Fig. 4 and discussed in

sections 2b–d. Model 2 experiments are shown in Figs. 6–8 and discussed in section 3c.

Model Experiment Shift (% K21) Increase (% K21) Error (%)

CMIP5 multimodel mean 23CO2 3.3 0.9 33

MPI-ESM-LR 23CO2 5.7 1.3 14

Model 1 Warm 7 7 2

Weaken w 24 24 1

Skew w 5 21 27

Warm, skew w 13 6 15

Warm, weaken w, skew w 8 2 21

Model 2 Increase Qn, widen Qn 11 9 11

Increase Qn, decrease S 11 8 23

Narrow Qn, decrease S 0 21 81

Warm, increase S 0 0 22

Warm, increase Qn 11 8 23

Warm, narrow Qn 0 21 81

Warm, GCM Qn, increase S 2.0 1.6 12

Warm, GCM Qn, narrow Qn 1.7 0.5 68
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produces the shift mode alone, allowing us to reproduce

some salient features of the response of the rain distribution

towarming projected by climatemodels. Thismotivates us to

construct amodel that predicts vertical velocity tounderstand

how atmospheric energetic constraints lead to the increasing

skewness of the vertical velocity distribution with warming.

3. The second model: Predicted vertical velocity

We know that precipitation is energetically constrained

by total column heating and cooling. Thus, in this model

we start with energetics. We prescribe a distribution of

nonlatent heating Qn, which is the sum of radiative and

sensible heating and the convergence of dry static energy

flux in the atmospheric column (seeMuller andO’Gorman

2011). In the time mean, Qn balances the latent heating

and so relates to the total precipitation. In daily fields from

the MPI-ESM-LR climate model, the width of the atmo-

spheric radiative cooling distribution is small compared

with that of the atmospheric column dry static energy flux

convergence, so the standard deviation of the nonlatent

heating distribution sQn
comes primarily from the con-

vergence of the dry static energy flux. The distribution of

Qn thus captures both the impact of radiation and the

transport of energy by the circulation.

a. Model description

Our goal is to predict the distribution ofw, which will

in turn give us the rainfall from Eq. (2), as in our first

model. We begin with the temperature and moisture

distributions (again connected by the assumption of

saturation; Fig. 5a), except that the tail of the temper-

ature distribution is truncated at a maximum temper-

ature Tmax, which in turn implies a maximum allowable

moisture content. We then assume that the nonlatent

atmospheric column heating Qn (Fig. 5b) can be de-

scribed by another independent Gaussian distribution.

The sum of nonlatent atmospheric column heating and

latent heating from precipitation must be zero in the

time mean to maintain energy conservation.

We calculate the distributions of vertical velocity and

rain according to a form of the following thermodynamic

equation (inspired by Sobel and Bretherton 2000):

wS5Q
n
1Q

l
, (5)

where the parameter S is a constant that converts energy

to vertical motion. In Sobel and Bretherton (2000), S is a

stability that varies in time and space, but here we as-

sume it is a constant to maintain the mathematical

simplicity of the model. Physically, this equation implies

that the total atmospheric column heating (both latent

Ql and nonlatent Qn) exactly balances the energy re-

quired to move air (w) against stability S. This balance

holds in the time mean in the real world, but here we

enforce it at all times.

We calculate the latent heatingQl from themoisture and

vertical velocity when it is raining (as in the first model):

FIG. 5. (top) The prescribed distributions driving the second model, where vertical velocity is predicted: (a) temperature and moisture

and (b) nonlatent heating (mean is noted in the top-right corner). (bottom) The resulting predicted distributions of (c) vertical velocity,

(d) rain frequency (dry frequency noted in the bottom-left corner), and (e) rain amount.
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where L is the latent heat of vaporization of water

(which we hold constant at 2:53 1026 J kg21, its value at

08C) and ra is the air density as in the first model. With

substitution, we have an equation for vertical velocity:
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To conserve mass, the average vertical velocity must equal

zero, as in the first model, and to conserve energy, themean

latent heating Ql must be equal and opposite to the mean

nonlatent heating Qn. These balances are effected by in-

tegral constraints based on Eq. (5), derived in appendix B.

The parameters we use are listed in Table 3. Themean

of the nonlatent atmospheric column heating is equal

but opposite to the CMIP5 multimodel mean pre-

cipitation (88Wm22), and its standard deviation is

dominated by variability in the dry static energy flux

convergence on short time scales (following Muller and

O’Gorman 2011); we choose a value similar to those we

found in climate model integrations.

Truncating the temperature distribution is necessary

to ensure that the denominator in Eq. (7) never drops to

or below zero, which would result in infinitew. The term

Tmax can be interpreted as an upper bound on SST,

which is enforced by convection in the real world (Sud

et al. 1999; Williams et al. 2009).

In addition to our choice of Qn, we also choose T, sT ,

Tmax, and sQn
values that are plausibly realistic or com-

parable to calculations using daily data from MPI-ESM-

LR. The other requirement to maintain a positive-definite

denominator in Eq. (7) is that S must be greater than

Lraq(Tmax). In this way, the minimum possible choice of

the parameter S is tied to Tmax. With a realistic tempera-

ture and moisture distribution and a constant S, the mini-

mum allowable value of S is much larger than observed

values of static stability (see, e.g., Juckes 2000).

The distributions of vertical velocity and rain produced

by our model with the parameters listed in Table 3 are

shown in Figs. 5c–e. As with the first model, the distri-

butions of rain frequency and amount are qualitatively

similar to observations and climate model simulations in

terms of both the peak magnitudes and overall structure.

Most importantly, the model predicts a skewed distribu-

tion ofw. To ensure that the skewness was not an artifact of

the nonzero mean of the nonlatent heating distribution, we

specified Qn 5 0 (thereby neglecting energy and mass bal-

ance) in an alternative calculation (not shown), and the

positive skewness remained. Rather, the skewness arises

from the asymmetry introduced by latent heating, as can be

seen in Eq. (7). Atmospheric column cooling (Qn , 0)

causes downward velocity, with amagnitude linearly related

toQn, since S is constant. But atmospheric heating (Qn . 0)

induces upward motion and also condensation. The result-

ing latent heating effectively weakens the stability, and w is

thus no longer simply proportional to Qn but grows super-

linearly withQn.

b. Perturbations about the control climate

Here we explore the responses to the three parame-

ters other thanwarming: mean nonlatent heatingQn, the

width of nonlatent heating sQn
, and stability S. To

maintain mass and energy conservation, when one pa-

rameter changes, it must be compensated by a change in

at least one other parameter. The amplitudes of the

parameter changes described in this section were chosen

so they can be compared with the next set of experi-

ments, where we warm by 3K. This is a fairly linear

regime where the results are not highly sensitive to the

amplitude of the perturbations.

In the first experiment, we increase the magnitude of

mean nonlatent heating Qn by 24Wm22 to 113Wm22

and balance it by widening the nonlatent heating dis-

tribution (allowing sQn
to increase by 27.5%, equivalent

to increasing the strength of heat transport conver-

gence). Details of how we carry out the variation of the

parameters are discussed in appendix A. The resulting

distribution of vertical velocity and the changes in rain

amount and rain frequency are shown in Figs. 6a–c. The

vertical velocity distribution has widened, with no

change in skewness. The rain frequency distribution

shifts to heavier rain rates, with no change in the dry

frequency, and thus no change in total rain frequency.

The total amount of rainfall increases (to balance the

increase in magnitude of nonlatent heating), reflected in

the response of the rain amount distribution.

Also included in Fig. 6c is the combined shift-plus-

increase mode fitted to the rain amount response. The fit-

ted shift-plus-increase response is colored orange (following

the color scheme shown in Fig. 2), which corresponds to

TABLE 3. Initial parameter choices for the second model.

Variable Value Description

T 287K Mean temperature

sT 10K Width of temperature

distribution

Tmax 317K Cap on the temperature

distribution

Qn 288 Wm22 Mean nonlatent heating

sQn
2500Wm22 Width of nonlatent heating

distribution

S 4:753 105 kgm21 s22 Stability
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equal magnitudes of shift and increase modes. The magni-

tudes and error of the fit are listed in Table 2 (and are

normalized by 3-K warming to compare with warming ex-

periments, discussed next); the error is themagnitude of the

response that the fitted shift-plus-increase response fails to

capture. The fitted shift mode is slightly bigger than the

fitted increase mode (11% vs 9%K21).

The response of the vertical velocity and rainfall dis-

tributions is essentially the same response we would get

from strengthening w in the first model (the opposite of

the weakeningw experiment in Figs. 4d–f); only here it is

achieved in a way that is consistent with energy as well as

mass balance. In this experiment, the magnitudes of

vertical velocity and rain change, but the shape of their

distributions, including of the fraction of events that are

rain-producing updrafts, does not.

In the second experiment, we again increase the

magnitude of mean nonlatent heating but now hold the

width of the nonlatent heating distribution constant and

instead decrease stability S. We determine the decrease

in S required to balance the increase inQn by linearizing

the energy/mass balance equation about a perturbation

in S, shown in appendix C. A decrease of S by 19% is

needed to maintain balance; the result is shown in

Figs. 6d–f. Again we see strengthening of the vertical

velocity distribution, but here we also see an increase in

skewness of 38%. The change in rain frequency distri-

bution has a shape that is similar to but not the same as in

the previous experiment because the symmetry is bro-

ken; there is an increase in the dry-day frequency by

0.4% and thus a decrease in the total rain frequency.

This change in symmetry arises from changing the mean

of Qn without changing its width, so that the fraction of

nonlatent heating events that are positive decreases (the

positive w events and rainfall follow). The fitted shift-

plus-increase mode to the rain amount response is

colored magenta to correspond to a broken symmetry

between the shift and increase modes.

In the third experiment, we narrow the distribution of

nonlatent heating by decreasing sQn
by 23% and com-

pensate it by decreasing S by 20%, holding Qn constant

(Figs. 6g–i). Here, there is negligible change in the

width, or strength, of the vertical velocity distribution,

but there is an increase in skewness which arises from

strong (though still relatively infrequent) updrafts. The

dry frequency increases, so there is an overall decrease

in rain frequency, occurring mainly at moderate rain

rates. At the same time, there is a slight increase in

frequency at the heaviest rain rates and a larger (but still

small) increase at light rain rates. The response of the

FIG. 6. Experiments varying parameters other than the mean temperature with the second model, following Fig. 4, but here the (left)

vertical velocity distribution is predicted. (a)–(c) Increasing the magnitude of mean nonlatent heating and increasing the width of the

nonlatent heating distributions while holding all other parameters constant. (d)–(f) Increasing the magnitude of mean nonlatent heating

and decreasing stability. (g)–(i) Narrowing the nonlatent heating distribution (decreasing sQn
) and decreasing stability. Note the smaller

y-axis magnitudes in (h),(i). Changes are normalized by a 3-K warming for comparison with Figs. 7 and 8.

6454 JOURNAL OF CL IMATE VOLUME 29



rain amount distribution is dominated by the decrease at

moderate rain rates and increase at heavy rain rates,

which are in balance because the total rainfall does not

change (Qn is fixed). The shift-plus-increase mode is

not a good fit for this response (light gray represents a

poor fit of the shift-plus-increase mode).

The response of the vertical velocity distribution is a

negligible change in width but an increase in skewness,

which we can understand as follows. The narrowing Qn

distributionwouldweaken the vertical velocity distribution,

but this is countered by the decrease in S, which strengthens

it [see Eq. (7)]. Meanwhile, decreasing sQn
with no corre-

sponding change inQn decreases the fraction of events that

are updrafts. The w distribution must adjust so that the

same total latent heating is achieved through fewer up-

drafts, which is accomplished by strengthening the strongest

updrafts, increasing the skewness of vertical velocity.

The response of the rain frequency and amount distribu-

tions to changing sQn
and S in Figs. 6g–i has some similarities

to but also differences from the response to increasing skew-

ness of w in the first model (Figs. 4g–i). The close fit by the

shiftmodeof the rainamount response to increasing skewness

in the first model indicates that the response is mostly just a

movementof the rain amountdistribution tohigher rain rates.

In contrast, in this model and experiment, the shift mode

poorly captures the response. Despite that it is not cap-

tured by the shift and increase modes, the rain frequency

and amount responses have interesting resemblances to

the global warming response in climate models. One

feature present here and in climate models that is not

captured by the shift-plus-increase response is the light

rain mode identified in Pendergrass and Hartmann

(2014b). The light rain mode is the small increase at light

rain rates (around 1mmday21) visible in Fig. 1c.

To summarize the effect of perturbing parameters

other than temperature in this model: increasing Qn in-

creases the total amount of rainfall, while increasing sQn

and decreasing S increase the magnitude of vertical ve-

locity events and the intensity of rainfall. When the

combination of parameters changes in such away that the

fraction of events that are updrafts changes, the skewness

of the vertical velocity distribution also changes.

c. Response to warming

Next, we explore the response of the vertical velocity

and rainfall distributions to warming. We increase T by

3K (while allowing Tmax to increase by the same amount).

To maintain energy and mass balance while warming, we

will begin by adjusting one other parameter at a time, con-

sidering three experiments in turn, shown in Fig. 7. These

first experiments are designed to help us understand the

model, and we will consider more realistic scenarios below.

In the first experiment, we balance warming by in-

creasing S. Stability also changes in climate model

FIG. 7. Experiments warming while varying one other parameter with the second model, following Fig. 6: (a)–(c) increasing stability,

(d)–(f) increasing themagnitude ofmean nonlatent heating, and (g)–(i) narrowing the nonlatent heating distribution [decreasingsQn
, note

the smaller y-axis magnitudes in (h),(i)].
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simulations of global warming; specifically, dry static

stability increases with warming in the tropics (e.g.,

Knutson and Manabe 1995) and subtropics and mid-

latitudes (e.g., Frierson 2006; Lu et al. 2007). We de-

termine effects of changingT on energy andmass balance

and the increase in S needed to balance it by linearizing

Eq. (B4) for energy and mass balance about perturba-

tions in S and T, shown in appendix C. This linearization

shows that one degree of warming is balanced by a 7%

increase in stability, where the factor of 7% arises from

the moistening associated with the warming. The distri-

butions of vertical velocity and moisture that result from

warming by 3K and increasing stability by 21% are

shown in Figs. 7a–c. The increased stability decreases the

magnitude of vertical velocity for a given atmospheric

column heating so that the vertical velocity is weakened

[its standard deviation decreases, as in Held and Soden

(2006) and Vecchi and Soden (2007)], and the distribu-

tion of rainfall is exactly unchanged. The skewness of

vertical velocity is also unchanged. In this model, the dry

frequency is just the fraction of the time that the atmo-

spheric column heating is negative; since atmospheric

column heating does not change in this experiment, nei-

ther does the dry frequency. The trade-off between

warming and stability here is similar to the trade-off be-

tween warming and the width of the vertical velocity dis-

tribution in our first model.

In the second experiment, we warm while increasing

the magnitude of mean nonlatent heating Qn and hold-

ing all other parameters constant. Recall that Qn con-

trols the total precipitation. The resulting distributions

of vertical velocity and rainfall are shown in Figs. 7d–f.

The resulting vertical velocity distribution has no sub-

stantial change in width, but it does have increase in

skewness. Similarly to the ‘‘narrow Qn and decrease S’’

experiment in Figs. 6g–i, the increase in moisture and

increase in mean Qn have largely compensating effects

on the vertical velocity distribution, except for a decrease

in the total fraction of updrafts compared to downdrafts,

resulting in an increase in skewness with little change in

width of the w distribution. The response of the rain

frequency distribution, on the other hand, is more similar

to the increasingQn and decreasing S experiment. There

is an increase in the dry frequency, and the rain amount

response is captured by a shift mode that is slightly larger

than the increase mode. Examination of Eqs. (2) and (7)

reveals that this is possible because both experiments

have the same change in Qn, and decreasing S has the

same effect on the denominator of Eq. (7) as increasing q.

In the third experiment, warming is balanced by nar-

rowing of the nonlatent heating distribution (decreasing

sQn
or weakening the dry static energy flux convergence;

Figs. 7g–i). In this experiment, the vertical velocity

distribution weakens while the skewness increases. The

skewness arises because of the decrease in upward fre-

quency and adjustments tomaintainmass as well as energy

balance, while the weakening results from the weakening

of the Qn distribution. The rain frequency and amount

distributions are very similar to the narrowing Qn and

decreasing S experiment with no warming.

In two final experiments, we emulate the changes seen in

climate models: we warm and also increase the magnitude of

nonlatent atmospheric columnheatingQn by1.1Wm22K21,

which is the rate at which global-mean precipitation and

clear-sky atmospheric radiative cooling increase in cli-

mate model projections of the response to transient

carbon dioxide increase (Pendergrass and Hartmann

2014a). This change in atmospheric radiative cooling

includes both the temperature-mediated and direct ef-

fects of carbon dioxide. To maintain mass and energy

balance, we allow a third parameter to change and keep

the fourth constant (first increasing S and then de-

creasing sQn
); these experiments are shown in Fig. 8.We

examine each parameter change separately, but in at

least one climate model simulation forced by a transient

increase in carbon dioxide (with MPI-ESM-LR) both

changes occur: S increases (by 1.7%K21 in the tropics)

and sQn
decreases (by 0.7%K21).

First, we warm, increase mean Qn, and allow S to in-

crease. According to the linearizations about S and T in

appendix C, a change in stability of 6.0%K21 is needed

to maintain energy and mass balance. This change in

stability is slightly smaller than what was needed to

balance warming alone (7%K21, discussed in the first

experiment above), owing to the accompanying change in

Qn. The result (shown in Figs. 8a–c) is a combination of the

experiments where we warmed and varied meanQn and S

separately. The vertical velocity distribution weakens and

has a small increase in skewness. There is amodest increase

in dry frequency and a modest break in symmetry between

the shift and increasemodes (2.0%vs 1.6%K).This is not as

large as the break in symmetry we see in climate models.

Finally, we warm, increase meanQn, and allow sQn
to

decrease by 6.2%K21. This value of sQn
change is need

to restore energy andmass balance given the warming of

1K and the increase in Qn of 1.1Wm22K21, chosen

following appendix A. In Fig. 8d we see a weakening of

the vertical velocity distribution and a larger increase in

skewness than in Fig. 8a. Analogously to the warming

and skewing experiment with the first model, the rain

frequency and amount distribution responses (Figs. 8e,f)

resemble the superposition of responses in previous

experiments. The dry frequency increases, and the re-

sponse of the rain frequency distribution has a decrease

at moderate rain rates that is partially compensated by

an increase at heavy rain rates. The rain frequency
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response strongly resembles the response we see in cli-

mate models (Fig. 1c), except that the light rain mode is

absent. The rain amount distribution response is par-

tially but not completely captured by the shift and in-

crease modes, which reflects that it is the sum of a

response that the shift-plus-increase mode captures (the

response to warming while increasing jQnj) and one that

it does not (the response to changing sQn
). The fitted

shift-plus-increase response overestimates the decrease

at moderate rain rates and underestimates the increase at

heavy rain rates, reminiscent of the extreme mode iden-

tified in Pendergrass and Hartmann (2014b).

To summarize, in our second model, the atmosphere

can respond in three ways to warming: 1) increasing the

stability S, which weakens the circulation w but has no

effect on rain, 2) increasing the total precipitation Qn,

which drives an increase in skewness of w and of the

intensity of the heaviest rainfall events, and 3) de-

creasing the width of the nonlatent heating distribution

sQn
, which leads to both a weakening of the circulation

and increase in its skewness, and the accompanying in-

crease in intensity of the heaviest rainfall events. In

climate model projections of warming, energetic con-

straints require an increase in the total precipitationQn.

In this simple model, if we warm and increase mean la-

tent heating Qn, the stability S and/or width of the non-

latent heating distributionsQn
—which is intimately related

to the circulation—must also change to maintain energy

and mass balance. Any combination of these parameter

changes results in 1) a weakening of the circulations (i.e.,

ofw), the essential conclusion of Vecchi and Soden (2007),

2) an increase in the skewness of w, and 3) an increase in

intensity of the heaviest rain events (e.g., Trenberth 1999).

4. Comparison with the response to warming in
climate models

The two heuristic models above show that increasing

skewness of the vertical velocity distribution coincides with

key characteristics of the changing distribution of rainfall that

we see in climate models. Does skewness of the vertical ve-

locity distribution increase with warming in climate models?

To address this question, we calculate statistics of daily

average 500-hPa pressure vertical velocity and their change

in three warming experiments in the CMIP5 archive (Table

4).We calculate the area-weighted global-averagemoments

fromyears 2006–15 and 2090–99 in theRCP8.5 scenario and

years 1–10 and 61–70 in the transient 1%yr21 carbon di-

oxide increase scenario (1pctCO2); these results can be

compared with the fitted shift-plus-increase modes of the

distribution of rain in Pendergrass and Hartmann (2014b).

Trends in data can contaminate statistical measures of a

distribution, so we also analyze the last 10 years of the CO2

quadrupling experiment (abrupt43CO2), when the cli-

mate is as close to equilibrating as is available in the CMIP5

archive, and trends are as small as possible.

All climate model simulations have increasing skew-

ness of vertical velocity, consistent with our expectations

from the heuristic models along with the changing dis-

tribution of rain in climate models. The magnitude of

increase in skewness varies widely across models, from

less than 1% to 27%K21. Note that the models with the

biggest increases in skewness (GFDL-ESM and IPSL-

CM5A models) also have a large extreme mode

(Pendergrass and Hartmann 2014b). While we have

touched on the extreme mode in our second heuristic

model, much about it remains to be investigated.

FIG. 8. Experimentswarming, increasing themagnitudeof thenonlatent heating distributionby the value fromclimatemodels, 1.1Wm22K21,

while varying one other parameterwith the secondmodel, followingFig. 6: (a)–(c) increasing stability and (d)–(f) narrowing the nonlatent heating

distribution (decreasing sQn
).
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The variance of vertical velocity decreases in all but

one of the climate model simulations. Decreasing vari-

ance of vertical velocity at 500 hPa is consistent with

Held and Soden (2006) and Vecchi and Soden (2007),

though their metrics were slightly different from ours

and the magnitude of changes shown here is smaller.

Additionally, the change in vertical velocity strength at

500 hPa is expected to underestimate the weakening of

the total vertical overturning circulation because the

strongest motion is above 500 hPa and shifts upward

with warming (Singh and O’Gorman 2012).

We include the changes in kurtosis in Table 4, the fourth

moment of the distribution. Larger kurtosis corresponds

to a fatter tail and a narrower peak of the distribution;

a normal distribution has a kurtosis of 3 (e.g., DeCarlo

1997). In all climate models, kurtosis of vertical velocity

is initially greater than Gaussian, and it increases with

warming.Our secondmodel predicts an increase in kurtosis

along with the increases in skewness. Interestingly, the

GFDL models have by far the largest increases in kurtosis

with warming (they also have large extreme modes).

We are now in a position to reconcile the differing mag-

nitudes of the shift and increasemodeswithwarming thatwe

see in climate model simulations. For the multimodel mean,

moistening occurs at about 6%–7%K21, and global mean

precipitation increases at 1.5%K21. The multimodel mean

rainamount responsehas an increasemodeof 1%K21 anda

shift mode of 3.3%K21. MPI-ESM-LR, whose response is

best captured by the shift and increase modes, has an in-

crease mode of 1.3%K21 and a shift mode of 5.7%K21.

We relate the shift and increase modes to changes in

moisture and circulation as follows (and shown in Fig. 4 as

well as listed in Table 2): moistening at 7%K21 results in

equal magnitudes of shift and increase modes. This is

countered by a narrowing of the vertical velocity distribu-

tion that is not quite as large, bringing the netmagnitudes of

both the shift and increasemodes down. Finally, an increase

in skewness of the vertical velocity distribution results in a

shift mode with no corresponding increase mode. The

combination of these three changes results in a shift mode

that is larger than the increase mode seen in the climate

model response to warming.

While the heuristic models developed here capture

some important aspects of the response of rainfall and

vertical velocity to warming seen in climatemodels, the cost

of its simplicity is the number of assumptions that must be

TABLE 4. Standard deviation, skewness, and kurtosis of 500-hPa pressure vertical velocity from CMIP5 models and their response to

warming (normalized by global-mean surface temperature change).

Scenario Model (Pa s21) Std dev(% K21) D std dev Skew (% K21) D skew Kurtosis (% K21) D kurtosis

RCP8.5 MIROC-ESM-CHEM 9.0 22.5% 20.66 0.57% 5.8 0.85%

FGOALS-g2 12 22.7% 21.9 1.4% 15 1.8%

NorESM1-M 8.1 22.0% 21.2 1.4% 8.6 3.5%

BNU-ESM 8.2 22.1% 20.80 2.7% 5.9 3.6%

CMCC-CESM 8.9 21.9% 20.56 3.1% 5.2 2.0%

BCC_CSM1.1 11 20.97% 21.8 4.0% 15 6.3%

IPSL-CM5B-LR 11 22.1% 23.3 4.4% 48 5.8%

MPI-ESM-LR 11 21.8% 21.00 4.6% 7.4 4.8%

CNRM-CM5 11 21.1% 21.9 5.4% 20 8.3%

GFDL CM3 8.5 21.7% 21.4 6.2% 13 10%

CCSM4 9.0 21.4% 21.8 6.2% 17 10%

GFDL-ESM2M 8.9 21.4% 21.6 16% 18 28%

IPSL-CM5A-LR 8.8 21.2% 21.1 21% 14 23%

GFDL-ESM2G 8.7 21.1% 21.3 22% 12 49%

Transient CO2

increase

IPSL-CM5B-LR 12 22.1% 23.2 2.3% 46 4.0%

MIROC5 10 22.0% 21.4 4.4% 10 6.5%

GFDL-ESM2G 8.8 21.0% 21.2 11% 10 22%

IPSL-CM5A-MR 9.5 22.1% 21.4 14% 18 19%

GFDL-ESM2M 8.9 21.8% 21.3 19% 12 38%

IPSL-CM5A-LR 9.1 22.7% 20.86 27% 11 26%

Abrupt CO2

increase

MIROC-ESM 9.3 22.6% 20.65 0.29% 5.6 0.75%

IPSL-CM5B-LR 12 22.3% 23.3 3.0% 48 5.1%

MIROC5 10 21.9% 21.4 4.2% 10 5.8%

CanESM2 9.3 20.64% 21.0 5.2% 9.6 6.2%

MPI-ESM-LR 11 21.4% 20.91 5.8% 7.0 4.7%

MRI-CGCM3 11 0.84% 22.0 17% 20 35%

IPSL-CM5A-MR 9.5 21.0% 21.4 20% 18 31%

IPSL-CM5A-LR 9.1 21.4% 20.87 25% 11 27%
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made. Assumptions for our idealized relationship between

moisture, vertical velocity, and rain rate include the fol-

lowing: that all moisture is removed whenever there is up-

wardmotion, that the vertical structure of the atmosphere is

fixed, and that relative humidity does not change. Our

models do not accommodate any unresolved processes,

parameterized in climate models, which can alter the re-

lationship between rainfall and vertical velocity. This ide-

alized framework also does not address the differing direct

and temperature-mediated responses of precipitation and

circulation to greenhouse gas forcing. Finally, aggregating

over all locations and seasons convolves many different

processes, and the relationships we explore here may not

hold for all of them. Nonetheless, while we anticipate that

our heuristic models do not capture the behavior of every

relevant process that contributes to the responses of rainfall

and vertical velocity to global warming, we think these

models are useful for understanding a substantial portion of

the response in many regions of most climate models.

5. Convective area

The spatial manifestation of the distribution of rain and

vertical velocity is convective area, by which we mean the

area with upward motion and the cloudiness and rainfall

that accompany it. The fraction of time that vertical motion

is upward and the fraction of time that it is raining in the

heuristic models presented here is analogous to the fraction

of the area in a domain where rain is occurring. The liter-

ature is currently unsettled about how the change in con-

vective area and frequency of upward motion are expected

to changewith warming. Johnson andXie (2010) argue that

the convectively active fractional area of the tropics changes

little relative to the area above an absolute SST threshold,

which increases by 45% over the twenty-first century in the

experiments they analyze, though this study focused on

monthly mean precipitation, rather than daily data. In

contrast, Vecchi and Soden (2007) report a decrease in the

number of grid pointswith upwardmotion inGFDLCM2.1

simulations of global warming in the tropics. Other recent

studies focusing on monthly to seasonal mean precipitation

find a decrease in the area of the ITCZ with warming

(Neelin et al. 2003; Huang et al. 2013; Wodzicki and Rapp

2016). Byrne andSchneider (2016) examine thewidth of the

ITCZ over a wide range of climates in a gray-radiation

climate model and find different responses in different cli-

mate states. In CMIP5 model simulations, the frequency of

dry days has a small but significant increase (see Fig. 1a or

Pendergrass and Hartmann 2014b).

The heuristic models shown here reproduce the increase

in dry frequency seen in theCMIP5models and thus also the

decrease in convective area. Figure 9 shows a schematic of

the tropical overturning circulation to aid in interpreting its

response to changes in the distribution of vertical velocity.

The initial distributionhas a regionof ascent that is narrower

than the regionof descent, analogous to the circulation in the

tropical atmosphere (Fig. 9a).Because the regionof ascent is

narrower and mass is conserved, the ascending motions are

stronger than corresponding descending ones. Decreasing

the standard deviation of the vertical velocity distribution

decreases the magnitude of both upward and downward

motion (weakening the circulation), with no change in area

of either region (Fig. 9b). Increasing the skewness of vertical

velocity increases the magnitude of upward motion while

decreasing its area and decreases the speed of descent while

increasing its area (Fig. 9c). When the decrease in standard

deviation and increasing skewness occur together, both

contribute to weakening the descending motion, but they

have competing effects on themagnitude of ascent, resulting

in little change in updraft strength (Fig. 9d).

6. Conclusions

We have introduced two idealized models relating the

distributions of rain and vertical velocity. In both models,

temperature (and thus moisture, assuming constant rel-

ative humidity) is prescribed, and the distribution of

rainfall is predicted. In the first model, the distribution of

FIG. 9. A schematic showing the effects of changing width and skewness of the vertical velocity distribution. An (a) initial skewed dis-

tribution of w, is perturbed by (b) decreasing its standard deviation, (c) increasing its skewness, and (d) both decreasing standard deviation

and increasing skewness together.
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vertical velocity is also prescribed and can be varied;mass

conservation is respected. In the second model, the dis-

tribution of nonlatent atmospheric column heating is

prescribed, the distribution of vertical velocity is pre-

dicted, and both mass and energy are conserved. Some

key assumptions made by both models are that relative

humidity is fixed within and between climate states and

that stability is constant within each climate state.

Both of these models show that increasing skewness, or

asymmetry, of the vertical velocity distribution is neces-

sary to recover important characteristics of the changing

distribution of rain with warming predicted by climate

models: dry-day frequency increases, and extreme pre-

cipitation increases at a rate faster than the increase in

mean precipitation. In the context of shift and increase

modes of change of the distribution of rain, an increase in

skewness is necessary to achieve the larger shift mode

than increase mode seen in climate model projections.

The second model, where the distribution of vertical ve-

locity is predicted, shows how the asymmetric influence of

latent heating creates skewness in the vertical velocity

distribution. Experiments with this model show that this

skewness increases in response to warming, along with

the adjustments needed to maintain mass and energy

balance. In addition to an increase in skewness, the

standard deviation of the vertical velocity distribution

also decreases, consistent with the weakening circulation

found in climate model simulations of global warming.

The models developed here capture salient aspects of

the changing distributions of rain and vertical velocity

with simple thermodynamic relationships, implying that

we do not need to resort to complex dynamical explana-

tions for these aspects of the changing distribution of rain.

The idealized relationships between the distributions of

vertical velocity and precipitation explored here hopefully

form abasis for understanding the richer andmore complex

interactions in climate models and in the real world.
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APPENDIX A

Numerical Solutions

a. Normal and skew-normal distributions

We calculate the value of the normal distribution at

points that are evenly spaced in percentile space—5000

points for Model 1 and 10 000 for Model 2. For the

temperature distribution, any values of T.Tmax are

truncated. For making calculations over joint distri-

butions (r over T/q and w in Model 1, r and w over Qn

and T/q in Model 2), we form a matrix over both dis-

tributions (of size 50003 5000 or 10 0003 10 000)1 and

calculate the value at each point in the joint space.

Calculating the skew-normal distribution is similar

to a joint distribution because the algorithm of Azzalini

and Capitanio (1999) calls for operating on two normal

distributions. We start with normal distributions u0 and

y (5000 samples for each). To get a distribution with a

shape parameter a (which is related to the skewness;

when a is zero the distribution is normal, and we use

a. 0 here), we calculate u1 5du0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 d 2)

p
, where

d5 a/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11 a2)

p
is a correlation related to the shape

parameter. Then, the skewed distribution z is u1 when

u0 . 0 and2u1 otherwise. Finally, this 50003 5000 array

is subsampled back to 5000 values by sorting them and

keeping every 5000th one.

b. Frequency and amount distributions

Weuse logarithmically spaced bins for the rain frequency

and amount distributions and choose 250 of them to obtain

stable fits of the shift-plus-increase modes. Details of the

calculation and further examples of rain amount and rain

frequency distributions can be found in Pendergrass and

Hartmann (2014c).We use 50 linearly spaced bins for p(T),

p(Qn), and p(w), which are for display only.

c. Model 2 parameters

To calculate the parameters in the second model,

there are two steps: the initial setup to find a balanced

state and variation of parameters about this state.

To set up the model initially, the challenge is meeting

energy and mass balance. We accomplish this numerically

by specifying all parameters other than Qn and then sys-

tematically solving for the value ofQn that achieves energy

and mass balance [Eq. (B4)]. First, we calculate the distri-

bution of T from T and sT , truncating anything over Tmax,

and we calculate the associated q. Then with a choice of S,

we calculate the LHS of the energy/mass balance equation

(B in appendix C). Finally, we use a specified value of sQn
,

and solve systematically for the value of Qn that most

closely results in mass/energy balance. We take a vector of

10000 Gaussian values evenly spaced percentile-wise (call

them y) and, using the sQn
value, calculate the RHS of the

energy/mass balance equation that would result for each

1With the introduction of Tmax, we truncate a few values at the

high end of the T/q distribution.
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choice ofQn 5 ysQn
. To vary parameters, newT,sT ,S, and

sQn
values can be manually chosen and a newQn found.

To find a new balanced state due to small variations in T

and S around the initial balanced state, we use the lineari-

zations in appendix C. This is done in three different ways.

Whenever possible, we use the linearization alone to find

newvaluesofTandS, or of thenewLHSof theenergy/mass

balance equation.When necessary, we resolve for a newQn

that best meets energy/mass balance as we did to find the

initial balanced Qn value. Otherwise (e.g., when changing

sQn
), we iteratively choose parameter values (manually)

until the energy/mass balance equation is satisfied again (to

four decimal places).Oncewehave a new set of parameters,

r, w, and their frequency and amount distributions p(r),

P(r), and p(w) are calculated once again.

APPENDIX B

Conservation of Mass and Energy

In this appendix, we derive the equation for mass and

energy conservation of the model described in section 3.

To conserve mass, we must maintain an integral of ver-

tical velocity over the entire distribution equal to zero:ð‘
2‘

ðqmax

0

wp(q,Q
n
) dq dQ

n
5 0, (B1)

where p(q, Qn) is the joint probability distribution func-

tion (pdf) of q andQn, and qmax is the maximum realized

specific humidity, occurring at temperature Tmax. To

conserve energy, we enforce that the total latent heating

must be balanced by the total nonlatent heating:

ð‘
2‘

Q
n
p(Q

n
) dQ

n
1

ð‘
2‘

ðqmax

0

Lrp(q,Q
n
) dq dQ

n
5 0,

(B2)

where p(Qn) is the pdf of nonlatent heating Qn.

Substituting Eqs. (2) and (5) into Eq. (B2), separating

regions of positive and negative Qn, exploiting the in-

dependence of q and Qn, and rearranging, we have the

following:

ðqmax

0

"
1

12 (Lr
a
q/S)

#
p(q) dq5

2

ð0
2‘

Q
n
p(Q

n
) dQ

nð‘
0

Q
n
p(Q

n
) dQ

n

.

(B3)

It is also possible to arrive at Eq. (B3) by starting from

the mass conservation constraint [Eq. (B1)], substituting

Eq. (5), exploiting the independence of q and Qn, recog-

nizing that
Ð
p(q) dq5 1, and rearranging.

Following either path, we find that both the mass and

energy constraints are met when

E
q

"
1

12 (Lr
a
q/S)

#
5

2

ð0
2‘

Q
n
p(Q

n
) dQ

nð‘
0

Q
n
p(Q

n
) dQ

n

, (B4)

where the expectation operator is defined as Ex[ f (x)]5Ð ‘
2‘ f (x)p(x) dx.

APPENDIX C

Linearization of Energy and Mass Balance about T
and S

Here, we linearize the mass and energy conservation

equation about its base state [the left-hand side of Eq. (B4)]

to obtain its response to small changes in stability S and

mean temperatureT. Alongwith new values ofQn andsQn

chosen by trial and error, we use this linearization to find

new sets of parameters that satisfy energy andmass balance

in the experiments described in sections 3b,c. To be concise,

in this appendix we refer to the lhs of Eq. (B4) as B:

B5E
T

�
1

12Lr
a
q(T)/S

�
. (C1)

a. Linearization in T

First,we linearize the lhs ofEq. (B4) tofind its response to

small changes in T and the associated moistening. We ex-

pand T5T1DT5T(11 x), where x5DT/T � 1. In-

corporating our moisture Eq. (1), we have the following:

B5

ðTmax

2‘

1

12Lr
a
q
0
e0:07T(11x)/S

p(T) dT. (C2)

A first-order Taylor expansion around B gives us

B’B
0
1 0:07DT B

1
, (C3)

where B0 is the value of B evaluated at T5T and

B
1
[

ðqmax

0

Lr
a
q/S

(12Lr
a
q/S)2

p(q) dq . (C4)

This integral is readily evaluated numerically from a

base q distribution.

b. Linearization in S

Next, we linearize Eq. (B4) to find the response to

small changes in stability S. Expanding S5 S1DS5
S(11 x), where x5DS/S � 1, we have the following:
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B5

ðqmax

0

1

12Lr
a
q/S(11 x)

p(q) dq . (C5)

Another Taylor expansion gives us

B’B
0
2

DS

S
B

1
. (C6)

We can combine Eqs. (C3) and (C6) and solve for DS:

DS5S

�
0:07DT2

B2B
0

B
1

�
. (C7)

Given a DT and possibly a new value of Qn or sQn

(which requires calculating a new value of B), we can

solve for the DS that satisfies mass and energy balance.
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