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ABSTRACT

Nonlinear atmospheric dynamics produce rare events that are hard to predict and attribute due to

many interacting degrees of freedom. Sudden stratospheric warming event is a model example.

Approximately once every other year, the winter polar vortex in the boreal stratosphere rapidly

breaks down, inducing a shift in midlatitude surface weather patterns persisting for up to 2-

3 months. In principle, lengthy numerical simulations can be used to predict and understand

these rare transitions. For complex models, however, the cost of the direct numerical simulation

approach is often prohibitive. We describe an alternative approach which only requires relatively

short-duration computer simulations of the system. The methodology is illustrated by applying

it to a prototype model of an SSW event developed by Holton and Mass (1976) and driven with

stochastic forcing. While highly idealized, the model captures the essential nonlinear dynamics of

SSWs and exhibits the key forecasting challenge: the dramatic separation in timescales between

the dynamics of a single event and the return time between successive events. We compute optimal

forecasts of sudden warming events and quantify the limits of predictability. Statistical analysis

relates these optimal forecasts to a small number of interpretable physical variables. Remarkably,

we are able to estimate these quantities using a data set of simulations much shorter than the

timescale of the warming event. This methodology is designed to take full advantage of the high-

dimensional data from models and observations, and can be employed to find detailed predictors

of many complex rare events arising in climate dynamics.
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1. Introduction31

As computing power increases andweather models growmore intricate and capable of generating32

a vast wealth of realistic data, the once-distant goal of extremeweather event prediction is starting to33

become plausible (Vitart and Robertson 2018). To take full advantage of the increased computing34

power, we must develop new approaches to efficiently manage and parse the data we generate35

(or observe) to derive physically interpretable, actionable insights. Extreme weather events are36

worthy targets for simulation owing to their destructive potential to life and property. Rare events37

have attracted significant simulation efforts recently, including hurricanes (Zhang and Sippel 2009;38

Webber et al. 2019; Plotkin et al. 2019), heat waves (Ragone et al. 2018), rogue waves (Dematteis39

et al. 2018), and space weather events, e.g., coronal mass ejections (Ngwira et al. 2013). These are40

very difficult to characterize and predict, being exceptionally rare and pathological outliers in the41

spectrum of weather events.42

Large ensemble simulations are the most detailed source of data to assess the frequency, intensity,43

and correlates of extreme weather events (e.g., Schaller et al. 2018). A single simulation must44

span decades to incorporate the possible impacts of climate change and decadal-scale variability45

and the full state space of a climate model may be billions of dimensions large, depending on grid46

resolution. Unfortunately, the data-richness of a long simulation comes at the cost of sample size:47

even the largest ensembles are limited to tens or hundreds of members as a matter of computational48

necessity. Under stationary background parameters and some ergodicity properties, a single49

simulation will eventually sample state space thoroughly and provide all relevant statistics. In50

practice, however, simulations are often not run long enough to reach steady state, and furthermore51

one may wish to change parameters over time. A much larger number of independent ensemble52

members would then be needed to quantify the effects of initial conditions, changing climatology,53
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feedbacks, and unresolved high-frequency variability with statistical confidence (Sillmann et al.54

2017; Webber et al. 2019).55

While the last decade has seen exciting progress in the development of targeted rare event56

simulation in geophysical contexts (Hoffman et al. 2006; Weare 2009; Bouchet et al. 2011, 2014;57

Vanden-Eijnden and Weare 2013; Chen et al. 2014; Yasuda et al. 2017; Farazmand and Sapsis58

2017; Dematteis et al. 2018; Mohamad and Sapsis 2018; Dematteis et al. 2019; Webber et al.59

2019; Bouchet et al. 2019a,b; Plotkin et al. 2019; Simonnet et al. 2020; Ragone and Bouchet60

2020; Sapsis 2021), predicting long time-scale behavior of complex dynamical systems remains61

a difficult task. A traditional approach to addressing this issue is through dimensional reduction62

techniques which seek to replace an expensive, high-fidelity model with a lower-dimensional and63

less costly model. Physics-based reduced-order models have a long and very successful history in64

atmospheric science, especially as prototypes of chaos and multistability (Lorenz 1963; Charney65

and DeVore 1979; Legras and Ghil 1985; Crommelin 2003; Timmermann et al. 2003; Ruzmaikin66

et al. 2003). Observationally, regime behavior has been diagnosed by projecting the empirical67

steady-state distributions onto leading EOFs (e.g., Crommelin 2003). More recently, significant68

attention has been paid to data-based dimensional reduction techniques that use data generated69

by the high-fidelity model to specify a more quantitatively accurate reduced-order model (e.g.,70

Giannakis et al. 2018; Berry et al. 2015; Sabeerali et al. 2017; Majda and Qi 2018; Wan et al.71

2018; Bolton and Zanna 2019; Chattopadhyay et al. 2020; Chen and Majda 2020). However the72

reduced-order model is derived, it can subsequently be thoroughly interrogated by direct computer73

simulation.74

We advance an alternative computational approach to predicting and understanding rare events75

without sacrificing model fidelity. Like data-informed reduced order modeling, our method relies76

on data generated by a high-fidelity model. However, unlike dimensional reduction techniques, our77
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approach focuses on computing specific quantities of interest rather than on capturing all aspects of78

a very complicated, high dimensional dynamical system. In particular we will compute estimators79

of statistically optimal forecasts using a data set of many short forward simulations. To accomplish80

this we represent these forecasts as solutions to Feynman-Kac equations. In the continuous time81

limit, these become partial differential equations (PDE) with a number of independent variables82

equal to the dimension of the model state space. It is therefore hopeless to solve the equations83

using any standard spatial discretization. As we demonstrate nonetheless, the equations can be84

solved with remarkable accuracy via an expansion in a basis of functions informed by the data set.85

Importantly, our approach to solving these equations is independent of the model used to generate86

the data, avoiding unrealistic simplifications or structural assumptions.87

As typical examples of the forecasts computatable within our framework, we focus on the88

probability that a warming event occurs before a return to a “typical” state, as well as the expected89

time that it takes for that event to occur. Both quantities depend on the initial condition, and are90

therefore functions over all of state space. Wewill follow the convention in computational statistical91

mechanics and refer to these as the committor function and mean first passage time (MFPT)92

respectively. The committor has been computed previously for low dimensional atmospheric93

models in Tantet et al. (2015); Lucente et al. (2019); Finkel et al. (2020). Forecasts like these94

quantify the risk associated with an event given the current state of the system. They also encode95

important information regarding the rare event itself.96

Even putting aside the difficulty of computing the committor and MFPT, they still must be97

‘decoded’; knowledge of these functions does not automatically reveal insights into the fundamental98

causes or precursers of a rare event. Nor are they easily applied to observations of a limited99

collection of variables. They are, after all, complicated functions of a high dimensional model100

state space. In Section 5 we will demonstrate a detailed statistical analysis of our computed101
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committor function aimed at identifying a relatively small subset of the original variables capable102

of describing the committor (in the sense defined below).103

We illustrate our approach on the highly simplified Holton-Mass model (Holton and Mass 1976;104

Christiansen 2000) with stochastic velocity perturbations in the spirit of Birner and Williams105

(2008). The Holton-Mass model is well-understood dynamically in light of decades of analysis106

and experiments, yet complex enough to present the essential computational difficulties of proba-107

bilistic forecasting and test our methods for addressing them. Despite the challenges posed by its108

75-dimensional state space, our computational framework can indeed accurately characterize of109

extreme events with unprecedented detail using only a data set of short model simulations. In the110

future, the same methodology could be applied to query the properties of more complex models111

where less theoretical understanding is available.112

Section 2 reviews the dynamical model, and section 3 describes a general class of methods which113

we then apply to our problem specifically in section 4. We present the results in section 5, including114

a discussion of optimal forecasting and physical insights gleaned from our approach. We then lay115

out future prospects and conclude in section 6.116

2. Holton-Mass model117

Holton and Mass (1976) devised a simple model of the stratosphere aimed at reproducing118

observed intra-seasonal oscillations of the polar vortex, which they termed “stratospheric vacil-119

lation cycles." Earlier SSW models, originating with that of Matsuno (1971), proposed upward-120

propagating planetary waves as the major source of disturbance to the vortex. This was a significant121

step outside the bounds of the nonacceleration theorem of Charney and Drazin (1961), which stated122

that the vortexwould be robust to disturbances under a variety of conditions. WhileMatsuno (1971)123

used impulsive forcing from the troposphere as the source of planetary waves, Holton and Mass124
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(1976) suggested that stationary tropospheric forcing, if large enough, could lead to an oscillatory125

response, purely through dynamics internal to the stratosphere.126

Radiative cooling through the stratosphere and wave perturbations at the tropopause are the two127

competing forces that drive the vortex in the Holton-Mass model. Altitude-dependent cooling128

relaxes the zonal wind toward a strong vortex in thermal wind balance with a radiative equilibrium129

temperature field. Gradients in potential vorticity along the vortex, however, can allow the propaga-130

tion of Rossby waves. When conditions are just right, a Rossby wave emerges from the tropopause131

and rapidly propagates upward, sweeping heat poleward and stalling the vortex by depositing a132

burst of negative momentum. The vortex is destroyed and begins anew the rebuilding process.133

Yoden (1987a) found that for a certain range of parameter settings, these two effects balance each134

other to create two distinct stable regimes: a strong vortex with zonal wind close to the radiative135

equilibrium profile, and a weak vortex with a possibly oscillatory wind profile. We focus our study136

on this bistable setting as a prototypical model of atmospheric regime behavior. The transition137

from strong to weak vortex state captures the essential dynamics of an SSW. The methodology138

presented here, using only observed short trajectories, can be applied equally to any of these models139

as well as observational data, which the reader should keep in mind as we present the specifics of140

the present application.141

The Holton-Mass model takes the linearized quasigeostrophic potential vorticity (QGPV) equa-142

tion for a perturbation streamfunction k′(G, H, I, C) on top of a zonal mean flow D(H, I, C), and143

projects these two fields onto a single zonal wavenumber : = 2/(0 cos60◦) and a single meridional144

wavenumber ℓ = 3/0, where 0 is the Earth’s radius. The resulting ansatz is145

D(H, I, C) =* (I, C) sin(ℓH) (1)

k′(H, I, C) = Re{Ψ(I, C)48:G}4I/2� sin(ℓH)
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which is fully determined by the reduced state space* (I, C), and Ψ(I, C), the latter being complex.146

Inserting this into the linearized QGPV equations yields the coupled PDE system147 [
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where we have nondimensionalized the equations with the parameter G2 = �2#2/( 5 2

0 !
2) in order148

to create a homogeneously shaped dataset more suited to our analysis. Boundary conditions are149

prescribed at the bottom of the stratosphere, which in this model corresponds to I = 0, and the top150

of the stratosphere IC>? = 70 :<.151

Ψ(0, C) = 6ℎ
50

Ψ(IC>?, C) = 0 (4)

* (0, C) =*' (0) mI* (IC>?, C) = mI*' (IC>?)

The vortex-stabilizing influence is represented by U(I), the altitude-dependent cooling coefficient,152

and the linear relaxation profile *' (I) =*' (0) + W

1000 I, which forces the vortex toward radiative153

equilibrium. Here W = O(1) is the vertical wind shear in m/s/km. The competing force of wave154

perturbation is encoded through the lower boundary condition Ψ(0, C) = 6ℎ/ 50.155

Detailed bifurcation analysis of the model by both Yoden (1987a) and Christiansen (2000) in156

(W, ℎ) space revealed the bifurcations that lead to bistability, vacillations, and ultimately quasiperi-157

odicity and chaos. Here we will focus on an intermediate parameter setting of W = 1.5 m/s/km158

and ℎ = 38.5 m, where two stable states coexist: a strong vortex with * closely following *'
159

and an almost barotropic streamfunction, as well as a weak vortex with * dipping close to zero160
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at an intermediate altitude and a disturbed streamfunction with strong westward phase tilt. The161

two stable equilibria, which we call a and b, are represented in the first row of Figure 1 by their162

I-dependent zonal wind and streamfunction profiles.163

The two equilibria can be interpreted as two different winter climatologies, one with a strong164

vortex and one with a weak vortex susceptible to vacillation cycles. To explore transitions between165

these two states, we follow Birner and Williams (2008) and modify the Holton-Mass equations166

with small additive noise in the * variable to mimic momentum perturbations by smaller scale167

Rossby waves, gravity waves, and other unresolved sources. While the details of the additive noise168

are ad hoc, this approach can be more rigorously justified through the Mori-Zwanzig formalism169

(Zwanzig 2001). Because many hidden degrees of freedom are being projected onto the low-170

dimensional space of the Holton-Mass model, the dynamics on small observable subspaces can be171

considered stochastic. This is the perspective taken in stochastic parameterization of turbulence172

and other high-dimensional chaotic systems (Hasselmann 1976; DelSole and Farrell 1995; Franzke173

and Majda 2006; Majda et al. 2001; Gottwald et al. 2016). More sophisticated parameterizations174

would surely influence the results (Hu et al. 2019), but would not present a fundamental problem175

for our purely data-driven numerical method.176

We follow Holton and Mass (1976) and discretize the equations using a finite-difference method177

in I, with 27 vertical levels (including boundaries). After constraining the boundaries, there are178

3 = 3× (27− 2) = 75 degrees of freedom in the model. Christiansen (2000) investigated higher179

resolution and found negligible differences. The full discretized state is represented by a long180
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vector181

X(C) =
[
ReΨ(ΔI, C), . . . ,ReΨ(IC>? −ΔI, C),

ImΨ(ΔI, C), . . . , ImΨ(IC>? −ΔI, C), (5)

* (ΔI, C), . . . ,* (IC>? −ΔI, C
]
∈ R3 = R75

Boundary terms are not included because they are constrained by the boundary conditions. The182

deterministic system can be written 3X(C)/3C =<(X(C)) for a vector field< :R3→R3 specified by183

discretizing (2) and (3). Under deterministic dynamics, X(C) → a or X(C) → b as C→∞ depending184

on initial conditions. The addition of white noise changes the system into an Itô diffusion185

3X(C) = <(X(C)) 3C +f(X(C)) 3] (C) (6)

where f : R3 → R3×3 imparts a correlation structure to the vector ] (C) ∈ R3 of independent186

standard white noise processes. We design f to be a low-rank, constant matrix that adds spatially187

smooth stirring to only the zonal wind * (not the streamfunction Ψ) and respects boundary188

conditions at the bottom and top of the stratosphere. We simulate the model using the Euler-189

Maruyama method: in a timesetep XC, after a deterministic forward Euler step we add the stochastic190

perturbation to zonal wind on large vertical scales191

X* (I) = f*
2∑
:=0

[: sin
[(
: + 1

2

)
c
I

IC>?

]√
XC (7)

where [: (: = 0,1,2) are independent unit normal samples. We set the magnitude of f by192

f2
* =
E[(X*)2]

XC
≈ (1m/s)2/day (8)

f* technically has units of (!/))/)1/2, where the square-root of time comes from the quadratic193

variation of the Wiener process. It is best interpreted in terms of the daily root-mean-square194

velocity perturbation of 1.0 m/s.195
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A long stochastic simulation of the model reveals metastability, with the system tending to196

remain close to one fixed point for a long time before switching quickly to the other, as shown197

by the timeseries of * (30 :<) in panel (c) of Figure 1. We display the zonal wind * at 30 km198

following Christiansen (2000), because this is about where zonal wind strength is minimized in199

the weak vortex. While the two regimes are clearly associated with the two fixed points, they are200

better characterized by extended regions of state space with strong and weak vortices. We thus201

define the two metastable subsets of R3202

� = {X :* (30 :<) (X) ≥ * (30 :<) (a) = 53.8</B}

� = {X :* (30 :<) (X) ≤ * (30 :<) (b) = 1.75</B}

This straightforward definition roughly follows the convention of Charlton and Polvani (2007),203

which defines an SSW as a reversal of zonal winds at 10 hPa. In the Holton-Mass model, where204

I = 0 at the tropopause, this translates to I = −7 :< ln(10/1000) − 10 :< = 22.2 :<, but we have205

adjusted the specific altitude here to 30 kmwhere the zonal wind reduction is most drastic. There is206

lively debate around the definition of SSW events (e.g., Butler et al. 2015), with different thresholds207

leading to different statistics. The details are affected by the definition in our analysis, but the results208

are qualitatively similar over a wide range. Our method is equally applicable to any definition,209

and so to illustrate we choose one that enjoys broad acceptance. Incidentally, the analysis tools we210

present may be helpful in distinguishing predictability properties between different definitions.211

The green highlights in Figure 1 (c) begin precisely when the system exits the � region bound212

for �, and end when the system enters �. The orange highlights start when the system leaves �213

bound for �, and end when � is reached. Note that �→ � transitions are much shorter in duration214

than �→ � transitions. Figure 1 (d) shows the same paths, but viewed in the space (|Ψ|,*) at 30215

km. The �→ � and �→ � transitions are again highlighted in green and orange respectively,216
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showing geometrical differences between the two directions. We will refer to the �→ � transition217

as an SSW event, even though it is more accurately a transition between climatologies according218

to the Holton-Mass interpretation. The �→ � transition is a vortex restoration event. Our focus219

in this paper is on predicting transition events and monitoring their progress in a principled way.220

In the next section we explain the formalism for doing so.221

3. Theory and computation222

a. Definitions223

We will introduce the quantities of interest by way of several simple, important examples.224

Suppose the stratosphere is observed in an initial state X(0) = x that is neither in � nor �,225

so * (b) (30 :<) < * (x) (30 :<) < * (a) (30 :<) and the vortex is somewhat weakened, but not226

completely broken down. We call this intermediate zone � = (�∪�)c (the complement of the two227

metastable sets). Because � and � are attractive, the system will soon find its way to one or the228

other at the first-exit time from �, denoted229

g�c =min{C ≥ 0 : X(C) ∈ �c} (9)

Because of stochastic forcing (which in practice arises from unobserved variables), the first-exit230

time is a random variable, formally called a “stopping time" (Oksendal 2003; Durrett 2013),231

meaning measurable from the history of X(C). The first-exit location X(g�c) is itself a random232

variable which importantly determines how the system exits �: either X(g�c) ∈ �, meaning the233

vortex restores to radiative equilibrium, or X(g�c) ∈ �, meaning the vortex breaks down into234

vacillation cycles. A fundamental goal of probabilistic forecasting is to determine the probabilities235
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of these two events, which naturally leads to the definition of the (forward) committor function236

@+(x) =



Px{X(g�c) ∈ �} x ∈ � = (�∪�)c

0 x ∈ �

1 x ∈ �

(10)

where the subscript x indicates that the probability is conditional on a fixed initial condition237

X(0) = x, i.e., Px{·} = P{·|X(0) = x}. (The superscript “+" distinguishes the forward committor238

from the backward committor, an analogous quantity for the time-reversed process which we do239

not use in this paper.) Throughout, we will use capital X(C) to denote a stochastic process, and240

lower-case x to represent a specific point in state space, typically an initial condition, i.e., X(0) = x.241

Both are 3 = 75-dimensional vectors. The boundary conditions in Equation (10) naturally extend242

the definition of @+ in �: if the vortex starts out very weak, x is close to set � and the system will243

probably land in � next, making @+(x) ≈ 1. If it starts out strong and close to �, it will most likely244

restore to � next, making @+(x) ≈ 0. The committor is clearly a function of initial condition x, but245

assuming the process is Markovian, it does not depend on the history of the system that led it to x246

in the first place.247

Another important forecasting quantity is the lead time to the event of interest. While the forward248

committor reveals the probability of experiencing vortex breakdown before returning to a strong249

vortex, it does not say how long either event will take in absolute terms. Furthermore, even if250

the vortex is restored first, how long will it be until the next SSW does occur? The time until the251

next SSW event is denoted g�, again a random variable, whose distribution depends on the initial252

condition x. We call Ex [g�] the mean first passage time (MFPT) to �. Conversely, we may ask253

how long a vortex disturbance will persist before normal conditions return; the answer (on average)254

is Ex [g�], the mean first passage time to �. Dissecting the expectations further, we may condition255
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g� on the event that an SSW is coming before the strong vortex returns, leading to the conditional256

first passage time Ex [g� |g� < g�], which in some sense quantifies the suddenness of SSW.257

All of these quantities can, in principle, be estimated by collecting averages over very long258

simulations. For example, to estimate the committor at a given x, one can shoot # trajectories259

starting from x and count the numbers #� and #� hitting � and � first. Then #�/# will be an260

estimate for the committor at x. The mean first passage time can be estimated using these same261

sampled trajectories. But this direct method can be prohibitively expensive, especially if applied262

to many points all over state space. By definition, transitions between � and � are infrequent.263

Therefore, if starting from x far from �, then a huge number of sampled trajectories (#) will be264

required to observe even a small number ending in � (#�). Likewise, transition path statistics such265

as return times can, in principle, be computed from an extremely long model run, but in most cases266

of interest this direct simulation approach will not be feasible.267

In Subsection 3(b) we will write these forecasts in a single general form, and describe a com-268

putational approach to compute them using only a data set of short forward model integrations.269

The method is called the Dynamical Galerkin Approximation (DGA), introduced in Thiede et al.270

(2019). It takes advantage of the Feynman-Kac formula (Oksendal 2003), recasting conditional271

expectations as PDE problems over state space. These equations are local and thus approximable272

by short trajectories. We perform these calculations on the Holton-Mass model and present the273

results in Section 4. In Section 5(a) we describe a statistical analysis to aid interpretation of the274

estimated committor.275

b. Dynamical Galerkin Approximation276

In this sectionwe describe themethodology, which involves some technical results from stochastic277

processes and measure theory. The forecast functions described above—committors andMFPTs—278
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can all be written as conditional expectations of the form279

� (x) = Ex

[
� (X(g))4−

∫ g
0 + (X(B)) 3B

+
∫ g

0
� (X(B))4−

∫ B
0 + (X(A)) 3A 3B

]
(11)

where again the subscript x denotes conditioning on X(0) = x; �,� and + are arbitrary known280

functions over R3; and g is a stopping time, specifically a first-exit time like Equation (9) but281

possibly with � replaced by another set. To see that the forward committor takes on this form,282

set � (x) = 1� (x) (one on set � and zero everywhere else), + = 0, � = 0, and g = g�2 . Then283

� (x) = Ex
[
1� (X(g))

]
= Px{X(g�2 ) ∈ �} = @+(x). For the mean first passage time to �, set g = g�,284

� = 0, + = 0, and � = 1. Then � (x) = Ex
[ ∫ g�

0 3C
]
= Ex [g�]. For the conditional first passage time285

to �, set � = 1�, g = g�2 , + = −_ (a constant) and � = 0. Then the expectation can be computed286

in two steps, by computing and differentiating a moment-generating function:287

� (x;_) = Ex
[
1� (X(g�2 ))4_g�2

]
1

@+(x)
m

m_
� (x;0) = Ex [g�21� (X(g�2 ))

Ex [1� (X(g�2 ))]
(12)

= Ex [g� |g� < g�]

Note that the event g� < g� is equivalent to X(g�c) ∈ �, where again �c = �∪�. We approximate288

m�/m_ with a centered finite difference, after computing � (x;_) for several _ in the neighborhood289

of zero. In principle we could compute higher moments in the same way and get a more detailed290

understanding of the conditional passage time distribution. Alternatively we could estimate � (x;_)291

for a large range of _ and recover the distribution with a Laplace transform.292

More generally, the function � is chosen by the user to quantify risk at the terminal time g; in293

the case of the forward committor, that risk is binary, with an SSW representing a positive risk and294

a radiative vortex no risk at all. The function � is chosen to quantify the risk accumulated up until295
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time g, whichmight be simply an event’s duration, but other integrated risksmay be ofmore interest296

for the application. For example, one could express the total thermal energy absorbed by the polar297

vortex by setting � = E′) ′, or the momentum lost by the vortex by setting � (x) =* (a) −* (x), or298

a vertically integrated version. Using the moment generating function in (12), one can compute299

not only means but higher moments of such integrals by expressing the risk with + .300

Let us now describe how to numerically compute � (x) of the form (11) with short trajectories,301

starting with the special case of the forward committor and then generalizing. Consider starting a302

random trajectory at x = X(0) ∈ � = (�∪ �)c and evolving it for a short time ΔC. Its probability303

of reaching � first, @+(x), is simply the probability that it reaches � first starting from @+(X(ΔC))304

instead, averaged over all possible X(ΔC) (ignoring momentarily the small probability that �∪� is305

reached before timeΔC). That is, @+(x) ≈Ex [@+(X(ΔC))] =: T ΔC@+(x). The operatorT ΔC is known306

as the (stochastic) transition operator, which maps a function on state space to the expectation of307

that function at a future time. We could furthermore divide by ΔC and take the limit ΔC → 0,308

eliminating the event g�c < ΔC, and obtain the Kolmogorov Backward PDE (e.g., Oksendal 2003;309

Weinan et al. 2019). Instead, to represent our numerical method more directly, we implement310

a purely finite-time approach from Strahan et al. (2020): artifically halt the dynamics upon first311

arrival in �c = �∪� and modify the equation to312

Ex [@+(X(ΔC ∧ g�c))] − @+(x)

= (T ΔC�c −1)@+(x) = 0 (13)

where ΔC ∧ g�c := min(ΔC, g�c) and T ΔC
�c is a “stopped" transition operator. This equation holds313

for x ∈ �, and comes with the boundary condition @+(x) = 1� (x) for x ∈ �∪�. Applying similar314

logic to the mean first passage time to �, let x ∈ �c, denote <� (x) = Ex [g�] and observe that g�c315
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decreases by ΔC ∧ g�c during the short timespan. So for all x ∈ �c,316

Ex [<� (X(ΔC ∧ g+�))] −<� (x)

= (T ΔC� −1)<� (x) = −Ex [ΔC ∧ g�] (14)

with the boundary condition <� (x) = 0 for x ∈ �. Now in the general case, let � stand in for the317

relevant region of state space and let�,� and+ be arbitrary. The corresponding operator equation318

is319

(T ΔC�2 −1)� (x) −Ex

[∫ ΔC∧g�c

0
+ (X(C))� (X(C)) 3C

]
= −Ex

[∫ ΔC∧g�c

0
� (X(C)) 3C

]
(15)

for x ∈ �, with boundary condition � (x) = � (x) for x ∈ �2. This linear equation comes from320

Dynkin’s formula, an integrated version of the Feynman-Kac; see Oksendal (2003); Karatzas and321

Shreve (1998); Weinan et al. (2019) theoretical background. The remarkable aspect of this formula322

is that while � is an expectation over paths going all the way to the boundary �c (a strong or323

weak vortex), it obeys a local equation with expectations over short trajectories of length ΔC. By324

collecting many short-trajectory samples, we can compute statistical properties of the event without325

ever actually observing one happen in simulation. Note that (15) reduces to (13) with + = � = 0326

and (14) with + = 0, � = 1.327

Like a PDE with a high dimensional independent variable space, Equation (15) cannot be solved328

using any classical discretization of the possible values of x. Successful approaches will involve329

a representation of the solution, �, suitable for the high dimensional setting, i.e. representations330

of the type commonly employed for machine learning tasks. The DGA method, in particular,331

consists of expanding the unknown function � in a “data-informed” basis (to be specified later).332

The expectations in Equation (15) are estimated by launching short trajectories from all over state333
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space. Finally, a finite system of equations is solved for the unknown coefficients in the basis334

expansion of �, in effect stitching together information from all trajectories at once.335

We can express the essential idea using the example of Equation (13) for @+(x), while the336

supplement contains a more general version. We first homogenize the boundary conditions with337

a guess function @̂+(G) that obeys the boundary conditions @̂+ |� = 0, @̂+ |� = 1, and let A (G) =338

@+(G) − @̂+(G), so that A obeys homogeneous Dirichlet conditions and satisfies339

(T ΔC�c −1)A (G) = −(T ΔC�c −1)@̂+(G) (16)

We next expand A in a finite-dimensional basis of functions {q1, . . . , q"}with unknown coefficients340

2 9 : A (G) =
∑"
9=1 2 9 (A)q 9 (G). Each q 9 obeys the homogeneous boundary conditions. Finally, we341

take the inner product of both sides with q8, with respect to some measure `, to produce a system342

of " linear equations343

"∑
9=1
〈q8, (T ΔC�c −1)q 9 〉`2 9 (A) = −〈q8, (T ΔC�c −1)@̂+〉`

8 = 1, . . . , " (17)

These inner products are intractable integrals over high-dimensional state space, but can be approx-344

imated using Monte Carlo integration. If X is an R3-valued random variable distributed according345

to `, and we have access to random samples {X1, . . . ,X# }, the law of large numbers gives346

lim
#→∞

1
#

#∑
==1

5 (X=) =
∫
R3
5 (x)`(3x) (18)

This is where the short trajectory data enters the picture. We generate a dataset of length-ΔC347

trajectories {X= (C) : 0 ≤ C ≤ ΔC, = = 1, . . . , #}. These short trajectories might enter � or � before348

time ΔC, and to account for this we also store the stopping times ΔC ∧ g=,�c . The X= (0)’s are349

sampled from an arbitrary measure `, called the sampling measure, which is determined by the350

sampling procedure for initial points. For example, if points are selected randomly from a long351
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trajectory, ` ≈ c (the steady-state probability density) by ergodicity. However, we may choose `352

so that many samples appear in regions of particular interest, such as transition regions far away353

from � and � and to which c assigns very little probability. Once the dataset is generated, we use354

` as the reference measure for the inner products in (17), allowing us to approximate them with355

Monte Carlo integration. For example,356

〈q8,(T ΔC�c −1)q 9 〉` (19)

≈ 1
#

#∑
==1

q8 (X= (0))
[
q 9 (X= (ΔC ∧ g=,�c) −q 9 (X= (0))

]
We can similarly estimate any expectation of the form (15) using different basis functions adapted357

to the specific region of interest.358

The formulation aboveworks for any class of basis functions that becomes increasingly expressive359

as the library grows, capable of estimating any function of interest. However, with a finite360

truncation, choosing the basis functions is a crucial ingredient of DGA, greatly impacting the361

efficiency and accuracy of the results. In our current study, we restrict to the simplest kind of basis,362

which consists of indicator functions q8 (G) = 1(8 (G), where {(1, . . . , ("} is a disjoint partition of363

state space. In practice we will construct these sets by clustering data. This basis set construction is364

borrowed from common practice in the computational statistical mechanics community for building365

a Markov State Model (MSM) (Frank and Fischer 2008; Pande et al. 2010; Bowman et al. 2013;366

Chodera and Noé 2014). MSMs are a dimensional reduction technique that has also been used367

in conjuction with analysis of metastable transitions, primarily in protein folding dynamics (Noé368

et al. 2009) and were recently used to study ocean circulation in Miron et al. (2021). DGA can be369

viewed as an extension of MSMs, though, rather than producing any reduced complexity model,370

the explicit goal in DGA is the estimation of specific functions as in Equation (11). The supplement371
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spells out DGA in considerably greater detail, which may be more helpful to view after seeing the372

forthcoming results.373

4. Methods374

In this section we explain our specific application of the Dynamical Galerkin Approximation375

(DGA) method (Thiede et al. 2019; Strahan et al. 2020) to the Holton-Mass model and validate376

our results empirically from simulation.377

a. Data generation378

There are many possible ways to choose starting points for the short trajectories. Whatever379

procedure we use will induce a sampling measure ` on state space. `(x) is a probability density380

that specifies the expected number of starting points per unit volume in the region of state space near381

x. This is a natural reference measure for the Monte Carlo inner products described in Subsection382

3(b). Because ` has minimal requirements, the user is afforded great flexibility in sampling the383

data. How to efficiently generate maximally informative data is an active and nontrivial research384

question, but a few heuristics are obvious. In a metastable system, setting ` = c would be a poor385

choice, because the data would be strongly concentrated in the immediate neighborhoods of � and386

�, whereas the regions of primary interest are the transition regions somewhere in between � and �.387

Different physical observables, such as the Eliassen-Palm flux, may be important prior candidates388

for their predictive power, and we might like to seed data samples uniformly over a certain range389

of that variable. On the other hand, the samples should fall within a physically realistic region of390

state space, not just any point in R75. To see why, recall that the last 25 entries of the state vector391

X represent the velocity field at discretized vertical levels from I = 0 :< to I = 70 :<. Because392
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velocity is a continuous function of altitude, adjacent entries should be close together, which is not393

at all guaranteed for a randomly chosen 75-dimensional vector.394

Because a goal of this article is to demonstrate interpretable results of rare event analysis on395

a climate model, we choose an easy, probably suboptimal sampling strategy. We defer opti-396

mization to later work, perhaps for a more expensive model that demands it. We define our397

sampling distribution as the equilibrium distribution, re-weighted to be uniform over the space398

(* (30 :<), |Ψ| (30 :<)) within the bounds realized by the control simulation, which are approx-399

imately −30</B ≤ * (30 :<) ≤ 70</B and 0<2/B ≤ |Ψ| (30 :<) ≤ 2×107<2/B. Without direct400

access to the equilibrium distribution, we approximate it by running a very long trajectory of401

500,000 days, producing many transitions like those shown in Figure 1, with an Euler-Maruyama402

timestep of 0.005 days (for comparison, a single transition event takes on the order of 100 days).403

We acknowledge this is cheating on our claim to only use short trajectories; however, we use404

the long simulation only to seed the initial conditions for those short trajectories, as well as to405

empirically validate the results of DGA later on. This way we can emphasize the power of DGA406

itself, which will motivate more efficient upstream data generation methods. Alternatives exist for407

sampling state space thoroughly without a long simulation, for example trajectory-splitting (e.g.,408

L’Ecuyer et al. 2007). One could initialize trajectories in one of the metastable sets, say in � di-409

rectly on the fixed point a, and integrate the trajectories for a short time to explore the surrounding410

region. These new data points can be used as initial conditions for the next round of simulation, at411

each stage exploring a wider region of state space until the bulk of the attractor is covered. This412

initialization procedure may require a long total simulation time, but is parallelizable. We will413

explore and optimize such methods in future work with more sophisticated models, where efficient414

initialization is more critical. For now we settle for initial data points from a long simulation.415
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After downsampling the long simulation to a resolution of 0.5 days, we sample snapshots from416

the trajectory, reweighted to induce a uniform distribution on the space (* (30 :<), |Ψ(30 :<) |).417

Specifically, we compute a discrete histogram over the two-dimensional space and weight each418

sample by the inverse of its density on that histogram. We collect # = 1×106 snapshots {X= (0)}419

directly from the long simulation, and then launch independent (hence completely parallelizable)420

short 10-day trajectories from each, to obtain the short trajectory database {X= (C) : 0 ≤ C ≤ ΔC, = =421

1 . . . , #}. Afterward we identify the first-entry times to �c for each trajectory, called g=,�c . This422

strategy is straightforward and guarantees that ` gives substantial probability to candidate transition423

regions and that only physically reasonable points are sampled.424

b. Computation and validation425

The partition {(1, . . . , ("} to build the basis function library {1( 9 (x)}#==1 should be chosen with426

a number of considerations in mind. The partition elements should be small enough to accurately427

represent the functions they are used to approximate, but large enough to contain sufficient data to428

robustly estimate transition probabilities. We form these sets by a hierarchical modification of  -429

means clustering on {X= (0)}#==1.  -means is a robust method that can incorporate new samples by430

simply identifying the closest centroid, and is commonly used in molecular dynamics (Pande et al.431

2010). However, straightforward application of  -means, as implemented in the scikit-learn432

software (Pedregosa et al. 2011), can produce a very imbalanced cluster size distribution, even with433

empty clusters. This leads to unwanted singularities in the constructed Markov matrix. To avoid434

this problem we cluster hierarchically, starting with a coarse clustering of all points and iteratively435

refining the larger clusters, at every stage enforcing a minimum cluster size, until we have the436

desired number of clusters ("). After clustering on the initial points {X= (0)}, the other points437

{X= (C),0 < C ≤ ΔC} are placed into clusters using an address tree produced by the  -means cluster438
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hierarchy. To guarantee that � and �c consist exactly of a union of subsets, we cluster points in439

� and �c separately, with a number of clusters proportional to the number of points therein. (We440

remind the reader that the domain and boundary depend on which quantity of interest is being441

computed. For the forward and backward committor, �c consists of � and �, which are defined442

a priori by thresholds of * (30 :<).) The total number of clusters is fixed to " = 1500. When443

doing out-of-sample extension on a point I, we first identify whether I ∈ � or �c, and assign it to444

a cluster accordingly.445

Figure 2 demonstrates the accuracy of the calculated forward committor and mean first passage446

time to � by taking advantage of the long trajectory from which we sampled the short trajectories.447

We divide the interval (0,1) into 20 bins, and identify for each interval (Z1, Z2) which data points448

{X= (0) : Z1 < @
+(X= (0)) < Z2} were en route to the vacillating regime at the instant they were449

selected from the long simulation. If the committor is computed accurately, the proportion of450

data points headed to � should fall in the interval (Z1, Z2). For example, about 20-25% of data451

points X= (0) whose committor is calculated to be within (0.2,0.25) should be headed to set452

�. Analogously, we expect rain 20% of the time the National Weather Service forecasts a 20%453

chance of rain. This is a very coarse measure of accuracy, and only a necessary condition, but the454

strong empirical match shown in the scatter plots of Figure 2 gives us confidence in our numerical455

results. The mean first passage time calculation is evaluated similarly: for all data points X= (0)456

with the estimated <� (X= (0)) in a certain range (C1, C2), we average the true first-passage time457

observed from the long trajectory. The match is quite good up until very long lag times, where458

DGA underestimates the long tail. The accuracy of committors and passage times improve as the459

dataset grows and clusters are refined. More sophisticated basis sets and sampling methods may460

significantly improve the convergence rate.461
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The committor and first passage time relate to the weather forecasting problem of predicting the462

next rare event given the current initial condition. However, they can also characterize the polar463

vortex climatology, meaning its average behavior over very long time periods as pertains to � and464

�. To wit, how much does the system “prefer" to be in a weak or strong state, as measured by the465

fraction of time it spends in either? This can be quantified by the steady state distribution (also called466

the invariant or stationary measure) c(x), the probability distribution function produced by binning467

data points from a very long simulation. Figure 3 illustrates that the metastable Holton-Mass model468

has a starkly bimodal distribution, with the system tending to spend a long time in state � or �469

before occasionally switching quickly to the other state. We have estimated c here using a variation470

on the DGA recipe described above. The details of the calculation can be found in the supplement.471

We have projected c onto the two-dimensional subspace ( |Ψ(30 :<) |,* (30 :<)) on a log scale,472

along with a one-dimensional projection onto the latter coordinate* (30 :<) on a linear scale. The473

preferences for � and � can be quantitatively compared by the fraction of time spent inside each set,474

as well as the fraction of time spent between the two sets but destined for either one. These ergodic475

averages can be found by averaging the forward committor over different regions of state space.476

For example, the fraction of time spent inside � is
∫
�
c(3x) =

∫
R3
1� (x)c(3x) = 〈1�〉c. Similarly,477

the fraction of time spent inside � is 〈1�〉c; the fraction spent outside � and � but destined for �478

is 〈1(�∪�)c@+〉c; and the fraction spent outside � and � but destined for � is 〈1(�∪�)c (1− @+)〉c.479

Table 1 displays these fractions calculated from DGA and empirically from the long trajectory.480

The time spent either in � or destined for � (the first two rows) is about equal to the time spent in481

or destined for � (last two rows). However, more time is spent destined for � than strictly inside482

�, as vacillation cycles often increase the zonal wind above 1.75 m/s before it dips back down.483

Furthermore, Figure 3 shows a higher and narrower peak in the � regime. We interpret that a484
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strong vortex is much less variable than a weak vortex, which is consistent with the vacillation485

cycles that characterize the latter.486

5. Results and Discussion487

Our analysis can be roughly divided into two parts. First, from a forecasting perspective, we488

demonstrate that the committor is more robust than naïve proxies from the model as a leading489

indicator of an oncoming SSW. We also find a low-rank representation of the committor in terms490

of the system’s basic observables using a sparsity-promoting LASSO regression (Tibshirani 1996).491

Second, we quantitatively relate the risk of an oncoming event with the lead time to the event, an492

important consideration in extreme weather prediction.493

a. The committor as an early warning494

Operational forecasting requires continuous updating of probabilities from incoming observa-495

tions, which provide only partial information on the state of the atmosphere. The choice of which496

observables to monitor is constrained by measurement capabilities, but is also informed by pre-497

diction efficacy; we desire warning signs that are highly correlated with the event and occur as498

early as possible to give some buffer time to brace for impacts. Figure 4 visually demonstrates the499

advantage of considering the committor as a forecasting metric compared to two other observables:500

zonal wind * and meridional eddy heat flux E′) ′, both measured at the same altitude of 30 km.501

We have extracted a typical complete SSW event (�→ � transition path) from the long simulation502

and plotted a timeseries of the observables on a common time axis. The time C = 0 corresponds503

to the central date of a warming event, the moment when the system first enters set �, with zonal504

wind at 30 km dropping below the threshold of 1.75 m/s. The committor timeseries (Figure 4a) is505

estimated by nearest neighbor interpolation from the dataset {X= (0)}#==1.506
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The committor curve timeseries first exceeds the threshold of 0.5 around 27 days before the507

event while rising sharply in a roughly S-shaped curve. A perfect committor-measuring instrument508

would be sending a strong signal of increasing risk at that time. Compare this with* (C), which is509

plateauing, or very gradually decreasing, around 40</Bwhen the threshold @+ = 0.5 is crossed. The510

apparently mild behavior belies the rapid increase in SSW risk shown by the committor timeseries.511

The dramatic drop in zonal wind occurs well after the committor exceeds 0.5, and so a reading512

of * directly would not give a strong warning sign until late in the progress of transition. One513

could write the committor as an approximate function of* (30 :<), which is plotted in Figure 5(a)514

as explained below, and would find that the *-level corresponding to @+ = 0.5 is around 37</B.515

Unfortunately, * (30 :<) does not drop below 37</B until the SSW is 12 days away, providing516

much less lead time than if the full committor were known. The considerable gap in prediction517

date is shown by a blue strip. Meanwhile, the heat flux over time plotted in panel (c) suffers the518

same deficiency as a predictor, having an analogous threshold of 1.2×10−6 ·</B. The E′) ′ level519

hardly budges while critical preconditions are falling into place, and only after the die is already520

cast in favor of a SSW does the heat flux rise sharply. A monitoring system based on heat flux521

alone would be very ill-informed about the risk of impending SSW event. While heat flux is a522

dynamically consequential quantity for describing the evolution of an SSW, this does not directly523

translate into good predictive properties. These prediction gaps are typical: over many simulated524

transitions, the average delay between @+(X(C)) clearing 0.5 for the last time the other observables525

clearing their thresholds for the last time are 9.1 days for* (30 :<) and 9.8 days for E′) ′(30 :<).526

We use the caveat “directly” because the possibility remains that the vertical scale in Figures 4527

(b-c) unfairly downplay the predictive power of zonal wind and heat flux. Perhaps they could be528

very robust predictors, if examined on the right scale and with appropriate (possibly nonlinear)529

transformations. Calculating such a transformation on theoretical grounds alone would be a530
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daunting task, especially in light of stochastic perturbations. But even if this were possible, at best531

this calculation would approximate nothing other than the forward committor itself. Furthermore,532

we incorporate all state variables at once into the committor calculation, which is at least as flexible533

as considering heat flux or zonal wind alone. Nonetheless, for the sake of dynamical transparency534

and practical observational constraints, it would be helpful to have a parsimonious representation535

of the committor in terms of a small number of state variables, if possible. We pursue this prospect536

in the following subsection.537

b. Sparse representation of the committor538

The committor’s superiority as a probabilistic forecast is not surprising, because it is built into539

the definition. The committor combines information from every degree of freedom in just the right540

way to give the probability of next hitting � rather than �. However, these degrees of freedom541

may not all be “observable" in a practical sense, given the sparsity and resolution limits of weather542

sensors. It is therefore important to ask: what is the best possible estimate of the committor given543

an observed subset of state variables? A related question arises in the design of observational544

systems: which variables should be measured to optimally estimate the committor, under cost and545

engineering constraints? In this section we will propose a systematic method to address these546

questions in the context of the Holton-Mass model.547

Consider a single-variable observable like * (30 km). If constrained to observe only * (30548

km) and forced to approximate @+(G) as a function of this one variable, we would average @+(x)549

across the remaining 74 model dimensions, weighted by the invariant measure. We would assess550

the quality of this observable by the variance across those projected-out dimensions: a large551

projected variance would imply strong dependence on unobserved variables. Figure 5 applies552

this projection to the committor (first row) and mean first passage time to � (second row), using553
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three different single-variable observables: * (first column), E′) ′ (second column), both at 30 km,554

and the LASSO regression (third column). The solid curves show the projected means, and the555

dotted curves indicate the one-standard-deviation envelope. @+(* (30 :<)) is a smooth, mostly556

monotonic curve with a consistently small projection error never exceeding ∼ 0.2, which occurs557

near @+ = 0.5. Compare this to @+(E′) ′(30 :<)), which is essentially discontinuous as heat flux558

increases from zero, and which has a large standard deviation approaching 0.3 when heat flux is559

small. This is consistent with its prediction properties as shown in Figure 4: while the heat flux560

reading hardly changes at all from zero, crucial processes are acively destabilizing the vortex, with561

the committor increasing significantly without any response from E′) ′. The projected mean first562

passage times tell a similar story, being strongly negatively correlated with the committor. Weaker563

zonal wind generally signals less lead time before entering state �, but while heat flux stays small,564

an observer is in the dark about how soon, as well as how certain, a transition is.565

Let us briefly formalize the projection idea before exploring other variables. We want to approxi-566

mate a function � :R3→R, such as the committor or mean first passage time, as a function of some567

reduced coordinates ) : R3→ R: , called “collective variables" (CVs) in chemistry literature. That568

is, we wish to find 5 :R:→R such that � (x) ≈ 5 () (x)). For instance, ) (x) = (\1(x), \2(x)) where569

\1(x) is the mean zonal wind at 30 km and \2(x) is the perturbation streamfunction magnitude570

|Ψ| at 30 km. Typically the projected dimension : � 3, for instance : = 1 or 2 for visualization571

purposes. The “best" function 5 is chosen by minimizing some function-space metric between572

5 ◦) and �. The simplest choice would be the mean-squared error, so the projection problem is to573

minimize over functions 5 : R: → R the penalty574

([ 5 ;)] : = ‖ 5 ◦ ) −�‖2
!2 (c)

=

∫
R3

[
5 () (x)) −� (x)

]2
c(3x) (20)
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The optimal 5 for this purpose is the conditional expectation 5 (y) = EX∼c [� (X) |) (X) = y] =575 ∫
5 (x)X() (x) −y)c(3x). We derive a discretized version of this formula in the supplement, and576

this is how we display all the low-dimensional projections. We call the square root of ([ 5 ;)] the577

projected standard deviation, or projection error, which determines the dotted envelope in Figure578

5.579

Amuch harder problem than optimizing over 5 given ) is the problem of optimizing over sets of580

coordinates ) . CVs can be arbitrarily complex nonlinear functions of the basic state variables x.581

Modern machine learning algorithms such as artificial neural networks are designed exactly for that582

purpose: to represent functions nonparametrically from observed input-output pairs. However, we583

wish tomaintain some interpretability in the committor representation. For this reason, in searching584

for optimal projections, we beginwithmore constrained and physics-informed feature spaces before585

allowing for more complex relationships. We focus on observables coming from the Eliassen-Palm586

(EP) relation, which relates wave activity, PV fluxes and gradients, and heating source terms in a587

conservation equation. From Yoden (1987b), the EP relation for the Holton-Mass model takes the588

form589

mC

(
@′2

2

)
+ (mH@)d−1

B ∇ ·L

= −
5 2
0
#2 d

−1
B @
′mI (UdBmIk′) (21)

where L = (−dBD′E′)j+ (dBE′mIk′)k

In the highly idealized Holton-Mass model, the EP flux divergence has two alternative expressions:590

d−1
B ∇ ·L = E′@′ = '

� 50
d−1
B E
′) ′. If there were no dissipation (U = 0) and the background zonal state591

were time-independent (mC@ = 0), dividing both sides by mH@ would express local conservation of592

wave activity A = dB@
′2/(2mH@). Neither of these is true in the stochastic Holton-Mass model, so593

we use the quantities in Equation (21) as diagnostics: enstrophy @′2, PV gradient mH@, PV flux E′@′,594
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and heat flux E′) ′. Each field is a function of (H, I) and takes on very different profiles in � and �,595

as found by Yoden (1987b). A transition from � to �, where the vortex weakens dramatically, must596

entail a reduction in mH@ and a burst in positive E′) ′ and negative E′@′ as a Rossby wave propagates597

from the tropopause vertically up through the stratosphere. This is the general physical narrative598

of a sudden warming event, and these same fields might be expected to be useful observables to599

track for qualitative understanding and prediction, along with the basic state variables* and |Ψ|.600

One option is to take vertical averages of any of these fields, but there may be particularly salient601

altitude levels that clarify the role of vertical interactions. The first three rows of Figure 6 display,602

for three of these fields (*, |Ψ| and E′) ′) and for a range of altitude levels, the mean and standard603

deviation of the committor projected onto that field at that altitude. Each altitude has a different604

range of the CV; for example, because * has a Dirichlet condition at the bottom and a Neumann605

condition at the top, the lower levels have a much smaller range of variability than the high levels.606

We also plot the integrated variance, or !2 projection error, at each level in the right-hand column.607

A low projected committor variance over * at altitude I0 means that the committor is mostly608

determined by the single observable * (I0), while a high projected variance indicates significant609

dependence of @+ on variables other than* (I0). In order to compare different altitudes and fields610

as directly as possible, the !2 projection error at each altitude is an average over discrete bins of611

the observable, not a proper integral.612

In selecting good CV’s, we generally look for a simple, hopefully monotonic, and sensitive613

relationship with the committor. Of all the candidate fields, * and mH@ stand out the most in614

this respect, being clearly negatively correlated with the forward committor at all altitudes. The615

associated projection error tends to be greatest in the region @+ ≈ 0.5, as observed before, but616

interestingly there is a small altitude band around 20−25 km where its magnitude is minimized.617

This suggests an optimal altitude for monitoring the committor through zonal wind, giving the618
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most reliable estimate possible for a single state variable. In contrast, the projection of @+ onto619

|Ψ|, displays a large variance across all altitudes. The eddy heat flux is also rather unhelpful as620

an early warning sign, despite its central role in SSW evolution, which is consistent with Figure621

5. For example, the large, positive spikes in heat flux across all altitudes generally occur after the622

committor ≈ 0.5 threshold has already been crossed. Furthermore, the relationship of E′) ′ with623

the committor is not smooth. The @+ < 0.5 region at each altitude is a thin band near zero. Even624

so, the optimal altitude for observing the committor through heat flux is also 20 km.625

The exhaustive observable search in Figure 6 is visually compelling, but not completely numer-626

ically satisfactory as a comparison between fields. Differences between units and ranges make it627

difficult to objectively compare the !2 projection error, despite the normalization mentioned above.628

Furthermore, restricting to one variable at a time is limiting. Accordingly, in a second, more auto-629

mated approach to identify salient variables, we perform a sparsity-promoting LASSO regression630

for the forward committor (Tibshirani 1996; Pedregosa et al. 2011), using as input features all state631

variables *,ReΨ, ImΨ and their vertical derivatives. We leave out eddy fluxes, which seem to632

have poor prediction properties. The advantage of a sparsity-promoting regression is to isolate a633

small number of observables that can decently approximate the committor in linear combination.634

Considering that regions close to � and � have low committor uncertainty, we regress only on data635

points with @+ ∈ (0.2,0.8), and of those only a subset weighted by the reactive probability density636

@+@−c, since we wish to isolate the dominant transition pathways. To enforce predicted committors637

being between zero and one, we regress on the probit-transformed committor ln(@+/(1−@+)). First638

we do this at each altitude separately, and in Figure 7 (a) we plot the coefficients of each component639

as a function of altitude.640

Each component is salient for some altitude range. In general, * and *I dominate as causal641

variables at low altitudes, while Ψ and ΨI dominate at high altitudes. The overall prediction642
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quality, as measured by '2 and plotted in Figure 7 (b), is greatest around 21.5 km, consistent643

with our qualitative observations of Figure 6. Note that not all single-altitude slices are sufficient644

for approximating the committor, even with LASSO regression; in the altitude band 50− 60 :<,645

the LASSO predictor is not monotonic and has a large projected variance. The specific altitude646

can matter a great deal. But by using all altitudes at once, the committor approximation may be647

improved further. We thus repeat the LASSO with all altitudes simultaneously and find the sparse648

coefficient structure shown in 7 (c), with a few variables contributing the most: * (21.5 km),649

* (29.6 km), ReΨI (13.5 km), and ImΨ (21.5 km). The results of LASSO regression are also650

displayed in the bottom row of Figure 4, the right column of Figure 5, and the bottom row of Figure651

6 for direct comparison with the other candidate fields. With multiple lines of evidence indicating652

21.5 km as an altitude with high predictive value for the forward committor, we can make a strong653

recommendation for targeting observations there. This conclusion applies only to the Holton-Mass654

model under these parameters, but the methodology explained above can be applied similarly to655

models of arbitrary complexity.656

c. Relationship to lead time657

A skillful forecast is only useful if it comes early and leaves some buffer time before impact.658

Having identified the committor as optimally skillful among all observables, we can now assess659

the limits of early prediction by relating certainty levels and lead times. Such a relationship would660

answer two dual questions: during the transition to an SSW winter phase, (1) how far in advance661

will we be aware of it with some prescribed confidence, say 80%? (2) given some prescribed lead662

time, say 42 days, how aware or in the dark could we be of it?663

These questions clearly involve some kind of first-passage time, like the curves in the bottom664

row of Figure 5. The same quantity has been calculated previously in other simplified models, e.g.665
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Birner and Williams (2008) and Esler and Mester (2019). But E[g�] has an obvious shortcoming.666

From Figure 5, we see that when @+ ≈ 0.5, E[g+
�
] ≈ 600, an average which includes half the667

paths going straight into � and the other half returning to � and lingering there before eventually668

crossing into �. The conditional passage time E[g� |g� < g�] is designed to highlight only the669

contribution of the latter half and measure the mean time of paths going directly to �, which can670

be computed by DGA using a Laplace transform as described in Subsection 3(b). Figure 8 shows671

all three quantities—the forward committor, mean passage time to �, and conditional passage time672

to �—this time projected on a two-dimensional observable space (ImΨ(21.5:<),* (21.5:<))673

identified as salient by sparse regression. Physically, these levels operate as a valve regulating wave674

propagation into the stratosphere.675

The committor has a clear negative relationship with both conditional and unconditional first676

passage time: as the risk of imminent SSW grows, the time until impact shrinks. Figure 9 shows677

this relationship more quantitatively, for both the �→ � process (panel (a)) and the �→ � process678

(panel (b)). The relationship is roughly quantified by a least-squares regressions, weighted by the679

change of measure, between the SSW probability @+ (resp. the restoration probability 1− @+) and680

the conditional lead time to the SSW event E[g� |g� < g�] (resp. the conditional lead time to vortex681

restoration, E[g� |g� < g�]). While the relationships are nonlinear and the spreads significant, the682

linear fits offer two meaningful numerical insight. The vertical intercept says how long the next683

excursion to a given state will take when the system starts trapped in the other state. The negative684

slope says how fast the remaining time shrinks as the risk grows. The vertical intercepts of 79 days685

and 107 days offer further evidence that the vortex breaks down faster than it restores.686

These metrics can inform preparation for extreme weather. For example, a threatened community687

might decide in advance on an “alarm threshold" of, say, 50%, meaning they plan to prepare for an688

SSW event only once it is 50% certain to occur. According to the linear fit in panel (a), they must689
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be ready to do so in ∼ 48 days time. The nonlinear deviations are, however, significant. The spread690

around the linear fit increases suddenly towards the lower-right corner of the plot, meaning that691

the uncertainty in timing, viewed as a function of the committor, increases as the SSW certainty692

increases. Lead time must therefore depend strongly on more than just the forward committor, and693

must be estimated by taking more details of the current state into account. We emphasize that the694

choice of �, � and alarm thresholds are more of a community and policy decision than a scientific695

one. The strength of our approach is that it provides a flexible numerical framework to quantify696

and optimize the consequences of those decisions.697

6. Conclusion698

Forecasting rare events is, by the very nature of rare events, an extremely difficult computational699

task. Given the dangers posed by climate change, it also one of science’s most pressing challenges.700

We suggest a computational framework that uses relatively short model simulations to make701

predictions on much longer time scales. Our numerical results point to its promise for forecasting.702

Within the context of a stochastically forced Holton-Mass model with 75 degrees of freedom,703

we have computed fundamental quantities of the SSW transition process, including committor704

probabilities and expected lead times, for both the vortex destruction and vortex restoration pro-705

cesses. The system is irreversible, making these two directions very statistically distinct from each706

other. By systematically evaluating many model variables for their utility in predicting the fate707

of the vortex, we have identified some salient physical descriptions of early warning signs. We708

have furthermore quantified the relationship between probability and lead time for a given rare709

event, a potentially useful paradigm for assessing predictability and preparing for extreme weather.710

Our results suggest that the slow evolution of vortex preconditioning is an important source of711
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predictability. In particular, the zonal wind and streamfunction at 20 km seems to be optimal712

among a large class of dynamically motivated observables.713

The committor and mean first passage time have obvious utility for forecasting, but they are also714

ingredients in a larger framework called Transition Path Theory (TPT) for describing rare steady715

state transition events. In principle, interrogating the ensemble of transition paths requires direct716

simulation of the system long enough to observe many transition events. However, using TPT,717

quantities computable by our framework can be combined to yield key statistics describing the718

ensemble of transition paths connecting regions in state space, (Finkel et al. 2020; Metzner et al.719

2006, 2009; Vanden-Eijnden and E 2010; E. and Vanden-Eijnden 2006). In a following paper we720

will apply the same short-trajectory forecasting approach together with TPT to compute transition721

path statistics such as return times and extract insight about physical mechanisms of the transition722

process.723

Our numerical pipeline is promising and robust, but leaves plenty of room for improvement.724

Our sampling method, while advantageous for validation of results, wastes a great deal of data.725

Targeted sampling from the transition region has the potential to achieve the same precision for the726

quantities of interest with much less data. Also, moving beyond a basis expansion of the forecast727

functions, in upcoming work we will explore more flexible representations using kernel methods728

and neural networks. The solution of high-dimensional PDEs is an active research area that is729

making innovative use of machine learning, particularly in the fields of computational chemistry730

and quantum mechanics (e.g., Chen and Majda 2017; Carleo and Troyer 2017; Han et al. 2018;731

Khoo et al. 2018; Li et al. 2020; Mardt et al. 2018; Li et al. 2019; Lorpaiboon et al. 2020). Similar732

approaches may hold great potential for understanding predictability in atmospheric science.733
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between the two quantities. The general trends reveal fairly obvious relationships: stronger1079
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Fig. 6. Projection of the forward committor onto a large collection of one-dimensional CVs,1087

along with the associated standard deviation, or projection error, of the committor along the1088

remaining 74 model dimensions. Consider the first two panels. The left-hand panel shows,1089

for each discretized altitude I, a heatmap of the committtor as* (I) ranges from its minimum1090

to its maximum realized strength at that altitude. At the bottom is an additional heatmap of1091

the committor as a function of 〈*〉I , the vertical average. These are conditional expectations,1092

with the corresponding conditional standard deviations displayed in the right-hand panels.1093

The following rows display analogous plots for wave magnitude, eddy PV flux, background1094

PV gradient, eddy heat flux, and the LASSO predictor specified in Figure 7. The bottom1095
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Fig. 7. Results of LASSO regression of the forward committor with *,ReΨ, ImΨ as input1097

features. Panel (a) shows the coefficients when @+ is regressed as a function of only the1098

variables at a given altitude, and panel (b) shows the corresponding correlation score. 21.51099

km seems the most predictive (where I ≡ 0 at the tropopause, not the surface). Panel (c)1100

shows the coefficient structure when all altitudes are considered simultaneously. By design,1101

most of the coefficients are zero, but most of the nonzero coefficients appear at 21.5 km, once1102

again distinguishing that level as highly relevant for prediction. . . . . . . . . . 601103

Fig. 8. Two-dimensional projections of the committor and mean first passage times. We have1104
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Fig. 1. Illustration of the two stable states of the Holton-Mass model and transitions between them. (a)

Zonal wind profiles of the radiatively maintained strong vortex (the fixed point a, blue) which increases linearly

with altitude, and the weak vortex (the fixed point b, red) which dips close to zero in the mid-stratosphere. (b)

Streamfunction contours are overlaid for the two equilibria a and b, the weak vortex exhibiting strong westward

phase tilt with altitude. (c) Timeseries of * (30 :<) from a long stochastic simulation, including several noise-

induced transitions from � to � (green) and from � to � (orange). Although both states a and b are equilibria in

this parameter regime (ℎ = 38.5<), the stochastic perturbations uncover the vacillation cycles that would appear

beyond the Hopf bifurcation if ℎ were increased. (d) A parametric curve of the same trajectory segment as in

(c) with the same color highlights for transition paths, but in the space (|Ψ|,*) at 30 km. The two equilibria are

indicated with horizontal blue and red lines.
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Fig. 2. Accuracy of the committor and mean first passage time calculations verified with long trajectory

data. The DGA calculations assign approximate committor and mean first passage time values @+(X= (0)) and

<� (X= (0)) to each data point. Because each snapshot G= was collected from a long trajectory, its destination and

the time to get there are known and can provide an empirical validation of the committor and lead time. For 20

equal partitions (Z1, Z2) of the interval (0,1), we assemble all trajectory starts X= (0) with @+(X= (0)) ∈ (Z1, Z2)

and count the fraction heading toward �. These are the empirical committors for the interval (Z1, Z2), and are

plotted on the vertical axis against (Z1+ Z2)/2. Similarly, we bin the space of calculated first passage times and for

each bin average the empirical first passage time to �. Both quantities line up well between DGA computations

and empirical values, with the exception of the longest passage times, which are underestimated.

1130

1131

1132

1133

1134

1135

1136

1137

1138

55



Fig. 3. Steady-state distribution. The density c(x) is projected onto the two-dimensional space (|Ψ|,*) at

30 km, on a log scale. The density is peaked in the neighborhoods of the two fixed points. On the right is a

projection of c onto the single variable*(30 km), on a linear scale, confirming strong bimodality.
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Fig. 4. The committor vs. other observables as a forecasting tool. A representative simulated SSW event

from the long simulation is plotted over time, starting 65 days in advance of the official event when * (30 :<)

first drops below 1.75 m/s, which is marked by a vertical solid line. Panel (a) shows the committor over time

following the trajectory, panel (b) shows the zonal wind * (30 :<), and panel (c) shows the eddy heat flux

E′) ′(30 :<). Horizontal dashed lines mark the natural forecasting threshold of @+ = 0.5 (panel (a)) or the value

of the observable most closely associated with @+ = 0.5: 37</B (panel (b)) and 1.2× 10−6 ·</B (panel (c)).

The sharp increase in @+ as it crosses the threshold provides a clear and early warning sign of oncoming SSW,

about 26 days in advance. * and E′) ′ are moving slowly at that time, and don’t clear their respective thresholds

for the last time until the event is much closer at hand. The gap in lead time is marked by blue strips.
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Fig. 5. One-dimensional projections of the forward committor and mean first passage time to �,

computed with DGA. These functions depend on all 3 = 75 degrees of freedom in the model, but we have

averaged across 3 − 1 = 74 dimensions to visualize the committor (first row) and mean first passage time to

� (second row) as rough functions of three single degrees of freedom: * (30 :<) (first column), E′) ′(30 :<)

(second column), and the LASSO-regressed committor (third column). The forward committor measures

proximity to � in probability, while mean passage time to � measures proximity in time, hence the negative

correlation between the two quantities. The general trends reveal fairly obvious relationships: stronger wind

is associated with tendency towards the strong-vortex state �, and larger poleward eddy heat flux is associated

with tendency toward the weak vortex state �. In addition, curves like this assess the quality of single-variable

observables as proxies for an oncoming transition event. The committor and passage time vary smoothly and

(mostly) monotonically with*, but discontinuously with E′) ′: the heat flux burst that accompanies a SSW gives

no advance warning for the event, while a small negative change in * indicates incrementally higher transition

probability and shorter lead time.
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Fig. 6. Projection of the forward committor onto a large collection of one-dimensional CVs, alongwith the

associated standard deviation, or projection error, of the committor along the remaining 74 model dimensions.

Consider the first two panels. The left-hand panel shows, for each discretized altitude I, a heatmap of the

committtor as * (I) ranges from its minimum to its maximum realized strength at that altitude. At the bottom

is an additional heatmap of the committor as a function of 〈*〉I , the vertical average. These are conditional

expectations, with the corresponding conditional standard deviations displayed in the right-hand panels. The

following rows display analogous plots for wave magnitude, eddy PV flux, background PV gradient, eddy heat

flux, and the LASSO predictor specified in Figure 7. The bottom line on the last plot is not a vertical average,

but the results of regression on all altitudes at once.
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Fig. 7. Results of LASSO regression of the forward committor with*,ReΨ, ImΨ as input features. Panel

(a) shows the coefficients when @+ is regressed as a function of only the variables at a given altitude, and panel

(b) shows the corresponding correlation score. 21.5 km seems the most predictive (where I ≡ 0 at the tropopause,

not the surface). Panel (c) shows the coefficient structure when all altitudes are considered simultaneously. By

design, most of the coefficients are zero, but most of the nonzero coefficients appear at 21.5 km, once again

distinguishing that level as highly relevant for prediction.
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Fig. 8. Two-dimensional projections of the committor and mean first passage times. We have projected

three quantities onto the observable subspace of zonal wind and imaginary part of streamfunction at 21.5 km.

(a) forward committor @+(G) = PG{g� < g�}, (b) first passage time to � E[g�], and (c) conditional mean first

passage time to � E[g� |g� < g�]. The condition g� < g� decreases the passage time by an order of magnitude,

because it excludes the possibility of getting trapped in � first. Figure 9 quantifies the relationship between the

committor and conditional passage time, and its forecasting implications.
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Fig. 9. Relationship between committor and mean first passage time. Panel (a) shows the relationship

between @+ (probability of next hitting �) and E[g� |g� < g�], the time until hitting � conditional on avoiding

�. These quantities correspond to panels (a) and (c) of Fiure 8. Panel (b) shows the same relationship but in the

�→ � direction. In both cases, we performed a least squares regression weighted by the change of measure. A

+0.1 increase in the probability @+ of next hitting � comes with a 6.3-day decrease in the expected time to get

there, whereas a +0.1 increase in the opposite probability 1− @+ comes with a 9.8-day reduction in the time to

reach �. Meanwhile, the vertical intercepts indicate the mean time of a full transition from �→ � (79 days) and

�→ � (170 days).
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