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Abstract16

Blocking events are an important cause of extreme weather, especially long-lasting block-17

ing events that trap weather systems in place. The duration of blocking events is, how-18

ever, underestimated in climate models. Explainable Artificial Intelligence are a class19

of data analysis methods that can help identify physical causes of prolonged blocking events20

and diagnose model deficiencies. We demonstrate this approach on an idealized quasi-21

geostrophic model developed by Marshall and Molteni (1993). We train a convolutional22

neural network (CNN), and subsequently, build a sparse predictive model for the per-23

sistence of Atlantic blocking, conditioned on an initial high-pressure anomaly. Shapley24

Additive ExPlanation (SHAP) analysis reveals that high-pressure anomalies in the Amer-25

ican Southeast and North Atlantic, separated by a trough over Atlantic Canada, con-26

tribute significantly to prediction of sustained blocking events in the Atlantic region. This27

agrees with previous work that identified precursors in the same regions via wave train28

analysis. When we apply the same CNN to blockings in the ERA5 atmospheric reanal-29

ysis, there is insufficient data to accurately predict persistent blocks. We partially over-30

come this limitation by pre-training the CNN on the plentiful data of the Marshall-Molteni31

model, and then using Transfer Learning to achieve better predictions than direct train-32

ing. SHAP analysis before and after transfer learning allows a comparison between the33

predictive features in the reanalysis and the quasigeostrophic model, quantifying dynam-34

ical biases in the idealized model. This work demonstrates the potential for machine learn-35

ing methods to extract meaningful precursors of extreme weather events and achieve bet-36

ter prediction using limited observational data.37

Plain Language Summary38

Blocking events are an important cause of extreme weather, especially long-lasting39

blocking events that trap weather systems in place. The duration of blocking events is,40

however, systematically underestimated in climate models. Using data generated by a41

simplified atmospheric model we demonstrate that, given sufficient training data, con-42

volutional neural networks can predict the maintenance of Atlantic blocking from an ini-43

tial blocked state. Next, we show that first training the neural network on data from the44

simplified model and then fine tuning the training using real world weather data enables45

prediction even with few examples of long-lasting blocking events in the observational46

record. Subsequent feature analysis of the resulting neural networks identifies the input47

variables that most strongly impact their predictions, revealing that areas of high pres-48

sure in certain parts of North America and the North Atlantic Ocean are important for49

predicting long-lasting blocking events and quantifying biases in the idealized model rel-50

ative to real weather.51

1 Introduction52

Blocking events are high-amplitude, quasi-stationary anticyclonic high-pressure anoma-53

lies that give rise to prolonged abnormal weather conditions in the mid-to-high latitudes (Rex,54

1950; Woollings et al., 2018; Lupo, 2021). Blocking events can lead to regional extreme55

weather by disrupting the usual westerly flow for extended periods (e.g., Kautz et al.,56

2022), causing extreme heatwaves, floods, and winter storms (e.g., Lupo et al., 2012).57

The predictive skill of numerical weather models has improved dramatically, but58

they still cannot accurately forecast important aspects of blocking events. Blocking fre-59

quency and duration are generally simulated poorly by climate models (Davini & D’Andrea,60

2020), and even by numerical weather prediction models in medium-range forecasts (Matsueda,61

2009; Ferranti et al., 2015; Woollings et al., 2018). Several possible contributing factors62

have been proposed, including the accuracy of the model’s mean flow (Scaife et al., 2010)63

or synoptic eddies (Berckmans et al., 2013; Zappa et al., 2014a), the model’s resolution (Davini64

& D’Andrea, 2016) and subgrid-scale parameterizations (d’Andrea et al., 1998), and even65
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the choice of blocking index itself (Dole & Gordon, 1983; Tibaldi & Molteni, 1990; Pelly66

& Hoskins, 2003).67

Two commonly used blocking indices (Dole & Gordon, 1983; Tibaldi & Molteni,68

1990) highlight two essential features of a blocking event : (i) a large positive anomaly69

of geopotential height that displaces the midlatitude jet, “blocking” the flow, that (ii)70

persists for longer than typical synoptic variability. Often a five-day (5d) threshold is71

invoked, but the longer the flow remains in a blocked state, the more severe the impli-72

cations, either for extended cold/hot conditions or an increased likelihood of compound73

storm events (i.e., back-to-back storms, which can dramatically increase the potential74

for damage; Kautz et al., 2022). The persistence of blocking is the focus of our study:75

given the onset of a blocked state, what is the likelihood that the flow will remain blocked76

for an extended period, 5 days for a standard event, or up to 9 days for more extreme77

cases? We take a data-driven approach, training a convolutional neural network to iden-78

tify persistent blocks at the onset of a blocked state.79

To understand blocking, various low-order models have been formulated to iden-80

tify essential features. In an influential early work, Charney and DeVore (1979) mod-81

eled blocking as one of two equilibrium states of a set of dynamical equations for a highly82

truncated barotropic channel model. Others used low-order models to propose that the83

positive feedback of synoptic-scale eddies on the blocking structure contributes to the84

long-time maintenance of blocks (McWilliams, 1980; Hoskins et al., 1983; Shutts, 1983).85

While these low-order models have provided useful physical insight, their application to86

the real world is limited by lack of land-sea interactions, topography, and other factors.87

Comprehensive models, on the other hand, are becoming skillful in simulating realistic88

blocking [(e.g. Davini et al. (2021))], but their complexity makes it challenging to iso-89

late the essential mechanism(s), and expensive to simulate numerous events.90

To strike a balance between complexity, transparency, and statistical robustness91

from abundant data (model output), we begin with the Marshall-Molteni (MM) model (Marshall92

& Molteni, 1993), a three-layer quasigeostrophic (QG) approximation of the atmosphere93

that has previously been used to study blocking events (e.g., Lucarini & Gritsun, 2020).94

The MM model captures the main features of the northern hemisphere atmosphere rea-95

sonably well. For example, Michelangeli and Vautard (1998) found that an enhanced baro-96

clinic wavetrain traveling across the North Atlantic is necessary to trigger the onset of97

the Euro-Atlantic blocking in both this simple model and reanalysis. They also pointed98

out that wave-wave interactions and wave-mean interactions dominate local amplifica-99

tion and the propagation of anomalies, respectively.100

The MM model allows us the freedom to develop and test methods in a data-rich101

setting, and precisely quantify the degradation of skill as we pass to a more realistic, data-102

poor setting. For the particular application of blocking, here we address the question:103

how well can a data-driven method identify persistent events as a function of the input104

data you allow it? Furthermore, to gain insight into the physics and predictability of block-105

ing, we turn to Explainable Artificial Intelligence (XAI) techniques, following work by106

Labe and Barnes (2021) and Rampal et al. (2022). Specifically, we employ Shapley Ad-107

ditive ExPlanation (SHAP) analysis to identify key regions upstream of the blocking cen-108

ter that enable prediction, and use this to construct low-order models the can be inter-109

preted in the context of prior work.110

Our ultimate goal, however, is to forecast and understand the maintenance of blocks111

in our atmosphere, for which we shift the focus to ERA5 reanalysis (Hersbach et al., 2020).112

For the most extreme case of a 9-day block in the North Atlantic, only 18 have occurred113

in the historical record (See Tab. 3). What chance does a data-driven approach have?114

To address the problem of limited data, we apply transfer learning: first we train a con-115

volutional neural network on the MM model to learn the basic features of blocking, and116

then we re-train it on the limited ERA5 data to calibrate it for the real atmosphere. In117
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this direction our results serve as proof-of-concept. It is likely another choice of phys-118

ical model could strike a better balance between accuracy and simulation cost for our119

purpose. Nonetheless, we find that pre-training on the MM model yields a better pre-120

dictor than when we train the same network on ERA5 alone, proving the efficacy of the121

transfer learning approach.122

The remainder of this paper is organized as follows. Section 2 introduces the Marshall-123

Molteni (MM) model, training data and blocking index. Section 3 formulates the block-124

ing event criteria and forecasting problem. Section 4 discusses our convolutional neural125

network structure and training details. We first focus exclusively on the MM model in126

sections 5 and 6, applying XAI techniques to visualize the important features for pre-127

diction and testing the results by building a sparse model with features guided by the128

XAI. We also suggest physical interpretations for these predictive features. Finally, we129

turn to the ERA5 data set in Section 7, applying transfer learning to improve the pre-130

diction of persistent blocks in ERA5, especially for more extreme events. SHAP anal-131

ysis shows how transfer learning has modified the CNN to adapt to the new data set,132

but preserves the use of key upstream regions for prediction.133

2 Model and blocking index134

Marshall and Molteni (1993) developed a 3-layer quasi-geostropic model of the at-135

mosphere to study atmospheric low-frequency variability. We refer the reader to Appendix Ap-136

pendix A for a complete description. We use a Northern Hemisphere only version of the137

model developed by Lucarini and Gritsun (2020) with 6210 degrees of freedom. The model138

is run with T31 horizontal resolution (corresponding to 90 longitude × 23 latitude grid-139

points across the northern hemisphere). All model output fields, as well as the reanal-140

ysis used later, are averaged daily.141

We use an index developed by Dole and Gordon (1983) to define blocking events,142

hearafter referred to as the DG index. This is an anomaly-based blocking index, but has143

been shown to capture the same essential features of blocking as other measures, e.g.,144

that of Tibaldi and Molteni (1990). We compute this index by transforming the spher-145

ical harmonic representation of the streamfunction ψ at 500 hPa into approximate geopo-146

tential height, Z, on a Gaussian grid for latitude and a uniform grid for longitude. The147

approximation is the choice of a fixed Coriolis parameter f0 to convert from ψ to Z, which148

causes minimal distortion over our midlatitude area of focus. Blocks are based on de-149

viations of the geopotential height from climatology, denoted Z ′.150

A blocking event is said to occur at a specific location when Z ′ stays above a tun-151

able geopotential height anomaly threshold, M , for at least five consecutive days. In their152

paper, Dole and Gordon (1983) tested statistics for varying M values, ranging from 50153

m to 250 m, with subsequent studies adopting different thresholds (Chan et al., 2019,154

Tab. 2). For our investigation, we calibrated M = 100 m for our MM model simula-155

tion to roughly match the blocking fraction computed from ERA5 reanalysis data, where156

we used the threshold M = 150 m as in Mullen (1987).157

Fig. 1 shows the blocking event statistics during the simulation. For comparison,158

blocking event statistics computed from ERA5 reanalysis data from 1959-2021 are also159

shown. In this study, we focus on North Atlantic blockings indicated by the white rect-160

angle in Fig. 1. We pick this region because it has a relatively high blocking frequency,161

and for its important influence on western Europe. We use ZB , the average 500 hPa geopo-162

tential height anomaly over this target region over the North Atlantic, to define blocked163

states and blocking events.164
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Figure 1. (a) Blocking fraction (the percent of days with T ≥ 5 days) for MM model data

with M = 100 m. (b) total blocking event counts for MM model data during the simulation. (c)

blocking fraction for ERA5 reanalysis data with M = 150. (d) total blocking event for ERA5

reanalysis data with M = 150m. In all subfigures, the region we focus on is indicated by the

white rectangle centered at 0◦E and 62◦N (approximately spanned by 3 longitude points covering

4◦W-4◦E, and 2 latitude points covering 60◦N-64◦N)
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Figure 2. Left: The blocking persistence problem: given a nascent blocked state, the goal is

to forecast whether it will persist into a long-lasting blocking event, or quickly return to clima-

tology. The percentile represents the climatological probability. Right: A sample trajectory of

ZB(t), the anomaly of geopotential height defined in Sec. 2. The vertical dashed lines indicate

new blocked states (T = 1). The red shading indicates the duration of the block. The label

Y = 1 indicates that the blocked state persisted 5 days to constitute a blocking event, while

Y = 0 indicates that it did not.

3 Probabilistic forecasting and event definition165

We aim to study the maintenance of blocks rather than their onset. Precisely, we166

formulate the question as the classification problem posed in Fig. 2: given a nascent blocked167

state, i.e., the state on a day that geopotential height anomalies over the North Atlantic168

first exceed the threshold M , can we immediately predict whether the flow will remain169

blocked for 5 or more days—evolving into a blocking event—or will the flow return back170

towards the climatological state before 5 days have passed? In the MM model, nascent171

blocked states evolve into 5-day persistent blocking events approximately 21% of the time.172

We pose the classification problem: given only the state at the time of blocking on-
set, can a data-driven method accurately identify the rarer cases that will persist for more
than 5 consecutive days? Mathematically, we denote the full model state by X and fur-
ther introduce a variable T for the running duration of a blocked state:

T = (days since ZB < M). (1)

Note that ZB(t) is determined by the state vector X(t) at any time t, but T (t) retains
some memory of previous states and thus is not fully determined by X(t). For exam-
ple, as shown in Fig. 2, suppose ZB(t) first rises above M on day t = 16 and dips back
below M on day t = 18. Then, T (t) = 0 for all days through t = 15, T (16) = 1,
T (17) = 2, and T (18) = 0. With this notation, we can say that “X(t) is the begin-
ning of a blocking event” if

T (t) = 1 and T (t+D − 1) = D. (2)

The condition T (t+D−1) = D only holds when there are at least D consecutive days173

with ZB(t) ≥ M starting from t. We can see an example of this in Fig. 2 at day 24,174

for both a block of duration 5 and 7 d. Here, T (24) = 1, and T (28) = 5, triggering175

the condition for D = 5. The flow remains blocked through T (30) = 7, such that day176

24 would also count as the onset of a D = 7 day blocking event.177

With this formulation, our central question becomes: given a T (t) = 1 state at
time t (the flow has just become blocked), will it stay blocked for D days, T (t + D −
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1) = D, or not? We address this question by estimating the conditional probability:

q(x(t)) = P[T (t+D − 1) = D |X(t) = x(t), T (t) = 1]. (3)

Many recent studies have summarized extreme climate and weather events via similar178

functions of state (e.g., Tantet et al., 2015; Finkel et al., 2021; Lucente et al., 2022; Jacques-179

Dumas et al., 2023; Miloshevich et al., 2023). Unless otherwise specified, we adopt D =180

5 to maintain consistency with the common blocking indices (Dole & Gordon, 1983; Tibaldi181

& Molteni, 1990; Pelly & Hoskins, 2003). We also consider more extreme events with182

D = 7 and D = 9.183

4 Convolutional Neural Network Training and Performance184

Convolutional Neural Networks (CNN) have gained widespread application in prob-185

abilistic forecasting problems (Liu et al., 2016; Ham et al., 2019; Miloshevich et al., 2023)186

for their outstanding performance on multidimensional data sets with spatial structure.187

A CNN differs from a dense neural network in the use of convolutional layers with shared188

weights and biases across layers within the network, designed to extract features that189

exhibit translation invariance across the input space (Goodfellow et al., 2016). Originally190

developed in the context of image processing, CNN excels in scenarios where target ob-191

jects, such as the face of a cat, may appear at different places within the training im-192

age. Convolutional layers allow the network to efficiently learn predictive features, com-193

bining information across multiple images. In our context, we expect predictive contri-194

butions from atmospheric eddies and Rossby waves, which share similar dynamics across195

all longitudes. A CNN can potentially extract these features more effectively than a fully196

connected architecture could, while still learning how they vary with longitude due to197

topography and other zonal asymmetries.198

The structure of the CNN in this investigation follows Miloshevich et al. (2023) and199

is shown in Fig. 3. It consists of a three-layer architecture, combining convolutional fil-200

ters followed by ReLu activations. Specifically, we use 32 and 64 filters (3×3) for the201

first and last two convolutional layers. Between each pair of convolutional layers is a max-202

pooling layer. The output is then flattened and passed to a dense layer with 64 neurons203

that produces 2 outputs. Finally, a softmax function converts these two outputs to com-204

plementary probabilities.205

We performed experiments with alternative CNN structures and found that reduc-206

ing the widths of layers mitigates overfitting, but also reduces the performance at the207

best epoch (not shown). Therefore we adopt the architecture in Fig. 3 and use early-stopping208

to avoid overfitting, as detailed below.209

4.1 Training and Test Datasets210

We create a training and test set of all states where the flow has just become blocked:211

{(X, T )|T = 1}, where X are 18× 90× 3 (latitudes × longitudes × pressure at levels212

of 200 hPa, 500 hPa, 800 hPa) grid maps of geopotential height from 20◦N to 87◦N. Our213

goal is to classify which of these cases persist into blocking events (Y = 1) versus states214

that do not (Y = 0). Fig. 2 shows a sample time series with 4 instances of a nascent215

blocked state, t = 16, 24, 38 and 47, only the second of which evolves into a persistent216

blocking event: Y = 0, 1, 0, and 0, respectively. For each case, the model must clas-217

sify Y = 0 or Y = 1 given only X at the onset time.218

We examined the sensitivity of CNN model performance with respect to different219

amounts of training data. To prepare the dataset, we integrate the MM model for 1250k220

days in total. The computational cost is low, requiring 1 CPU core and approximately221

11 hours. We select the first n days (with n ranging from 1k to 1000k) to create the train-222

ing data set, and always take the last 250k days for the test dataset. Thus all models223

–7–



manuscript submitted to JGR: Machine Learning and Computation

Figure 3. Convolutional Neural Network structure. The three convolutional layers respec-

tively use 32, 64 and 64 filters (3 × 3), followed by ReLu activations. Between each pair of con-

volutional layers is a max-pooling layer with window size 2 × 2. Then the output is flattened and

passed to a dense layer with 64 neurons that produces 2 outputs. A softmax function maps these

outputs to two positive numbers between zero and one, representing the estimated probabilities

of the the nascent blocked state to persist or decay.

Training data

Days Nascent blocked states

1k 63
10k 699
100k 7024
500k 35078
1000k 70635

Test data

Days Nascent blocked states

250k 17755

Table 1. Length of trajectory (in thousands of days) vs. number of nascent blocking states

(T = 1) in training set and test sets of varying size.

can be fairly compared. The trajectory length and the corresponding number of nascent224

blocked state states are shown in Tab. 1. The likelihood q of forming a blocking event225

varies depending on different persistence thresholds D. This dependence relationship is226

illustrated in Tab. 2.227

4.2 Learning procedure228

For simplicity, we use binary cross entropy as a loss function, a common choice for
classification (Miloshevich et al., 2023). Alternative loss functions have been studied by Rudy
and Sapsis (2023). The loss function L(q) is defined as as follows:

L(q) = − 1

N

N∑
i=1

[
Yi log q(Yi = 1) + (1− Yi) log(1− q(Yi = 1))

]
where q(Yi = 1) ∈ (0, 1) is the probability of the event Yi = 1 as predicted by the229

CNN. L(q) is small when the CNN assigns high probability to positive events and low230

probability to negative events.231

Given the rarity of blocking events, the data exhibit a pronounced class-imbalance,232

which becomes increasingly severe for longer block durations. As shown in Tab. 2, for233

D = 5, only about 1 in 5 nascent blocked states persist into an event, but D = 9, less234

than 1 in 20 evolve into persistent events. With this extreme imbalance, a model that235
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Threshold Y = 1 Y = 0 Positive rate

≥ 5 d 18748 69642 0.212
≥ 7 d 8522 79868 0.096
≥ 9 d 3891 84499 0.044

Table 2. The statistics of blocking events in our MM 1250k day simulation. The full dataset

exhibits 88390 nascent blocking states (T = 1 states). Y = 1 marks the number of these nascent

blocks that persist for 5, 7, or 9 d, thus evolving into a blocking event under these respective

thresholds, while Y = 0 denotes the number that don’t make it to the threshold.

never predicts an event will be correct over 80% or 95% of the time, respectively. How-236

ever, such a model would clearly underperform in terms of precision and recall (defined237

in the next subsection), which would both be zero.238

To address the class imbalance, for our results in this section we employ over-sampling (Johnson239

& Khoshgoftaar, 2019) techniques during training. In each epoch, we sample an equal240

number of nascent blocks from both classes until we complete an iteration over all the241

nascent blocks in the overrepresented class. As a result, the nascent blocks that persist242

have been sampled multiple times during each epoch.243

4.3 Performance metrics244

Throughout this study, we evaluate model performance using two key metrics: pre-
cision and recall. We monitor the values of these metrics on the test dataset through-
out the training process to determine the stopping point in order to avoid overfitting.
The precision and recall are respectively defined as

Precision =
True positives

True positives + False positives
, (4)

Recall =
True positives

True positives + False negatives
, (5)

where “True positives” is the number of data points with Y = 1 for which our CNN245

correctly predicts a persistent blocking event; “False positives” is the number of data points246

with Y = 0 for which our CNN incorrectly predicts a persistent blocking event; and “False247

negatives” is the number of data points with Y = 1 for which our CNN incorrectly pre-248

dicts that the blocked state does not persist.249

More informally, the precision measures the fraction of forecasted persistent blocks250

that actually persist. The recall, on the other hand, is the fraction of actually persistent251

blocks that are successfully forecasted. If one randomly predicts events with the clima-252

tological mean rate p, regardless of the system state, then the precision and recall are253

both given by p2N
p2N+(1−p)pN = p. This sets the floor for a useful predictor: both the pre-254

cision and recall must be higher than the climatological rate.255

There can be tradeoffs between improving the precision and recall. Predicting the256

event all the time will give you a perfect recall, but climatological precision p. A low re-257

call implies missing a substantial number of positive events, leading to inadequate prepa-258

ration and increased risk of damage. Conversely, a low precision suggests over-predicting259

events, “crying wolf” too often. In the context of extreme weather forecasting, this can260

lead to over-preparation, consequently reducing the efficiency of regular societal oper-261

ations, as well as trust.262
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A reasonably high value of both recall and precision is crucial for an effective and
resource-efficient forecasting model. We use a simplistic definition of ‘best’ performance,
expressed as

Overall performance = Precision + Recall . (6)

However, it is crucial to note that in practical scenarios, designing overall performance263

metrics requires careful consideration of the cost of preparing vs. risk of damage asso-264

ciated without preparation.265

This näıve criterion only works when the precision and recall are both reasonably266

high, since forecasting the event all the time will yield a performance score of 1+p (re-267

call of 1 and precision of p). We used caution in ERA5 based forecasts, requiring our trained268

models exhibit nontrivial precision above the climatological rate. We found that the F1-269

score (Sasaki et al., 2007), another common performance metric, selects the same epoch270

as the metric in (6).271

4.4 Performance and early stopping technique272

The top row of Fig. 4 shows the precision and recall evaluated on the test data for273

varying training data sets for D = 5. Both the precision and recall metrics are plot-274

ted starting from the end of Epoch 1 (the leftmost point on the horizontal axis of Fig. 4);275

From Epoch 2 to Epoch 10, the precision increases, chiefly reflecting a decrease in the276

false positive rate, as the CNN becomes better at discriminating between persistent and277

non-persistent flow configurations. At the same time, the recall slowly decays: the false278

negative rate rises slightly as the network becomes more conservative and less likely to279

over-predicting persistent cases. Except for the low data regime (1k days), the perfor-280

mance of the CNN asymptotes after approximately 10 epochs where the precision and281

recall are approximately equal, but this is not necessarily the ideal stopping time (Miloshevich282

et al., 2023).283

To select the CNN parameters with the best performance, we assessed the over-284

all performance defined in Eq. (6) at the end of each epoch. We then use the parame-285

ters from the epoch with the largest value. The “best” CNN is obtained by training on286

the full data set of 1000k days for 4 epochs, indicated by the star in Fig. 4. It achieves287

precision of 0.70 and recall of 0.87, exhibiting significant predictive power over the cli-288

matological mean prediction (the black dashed line with value 0.21). Therefore, we use289

it for further analysis in Sec. 5.290

All of our CNNs significantly outperformed the climatological mean prediction for291

any amount of data or training length. Interestingly, although the best performance is292

always realized with the longest trajectory of 1000k days, precision and recall have dif-293

ferent sensitivities to the training data size. For D = 5 events, the precision improves294

with more data up to 100k days (equivalent to approximately 1000 winters), after which295

additional data does not lead to much improvement. The recall, however, is more data-296

hungry; its performance continues to improve with more data up to 500k days, equiv-297

alent to 5 millennia of winter data. This reflects the fact that more data continues to298

help the CNN avoid missing events after its ability to limit false positive forecasts has299

saturated.300

Fig. 4 also shows the results for higher persistence thresholds, D = 7 and 9. These301

thresholds correspond to rarer events, and even with the longest trajectory of 1000k days,302

the precision and recall curves suffer for two reasons. First, as seen from Tab. 2, the num-303

ber of positive events drops, effectively limiting the data set almost by a factor of 5 for304

the most extreme D = 9 cases. More importantly, however, it simply becomes harder305

to discriminate rare events as the data set becomes more imbalanced: less than 1 in 10306

nascent blocking states will evolve into a 7 d blocking event, and less than 1 in 20 into307

–10–



manuscript submitted to JGR: Machine Learning and Computation

Figure 4. Precision (a,c,e) and recall (b,d,f) as a function of training epoch, for CNNs trained

on datasets of varying sizes (curve color) and thresholds of blocking persistence (rows). As de-

tailed in the text, all the models are tested on events from the same 250K dataset not seen in

training. Panels (a,b) show results for 5 day blocks (D=5); for example, the light blue curves are

trained on all events in the full 1000k-day simulation, while the other curves show results based

on smaller training sets as indicated by the legend. The blue stars indicate the “best” CNN (see

text), with a precision=0.70 and recall=0.87. Panels (c,d) show results for D=7 blocks and (e,f)

for D=9 blocks. Fewer curves are displayed for D = 7 and D = 9 for the sake of clarity. Shading

indicates uncertainty, assessed by taking one standard-deviation of results of ten neural network

training with i.i.d random parameter initialization.
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a 9 d blocking event. Without our efforts to overcome this imbalance, a network can clas-308

sify almost all events correctly by never predicting a persistent case.309

Despite the difficulties, the CNNs still show some skill in rare event forecasting. Given310

the full 1000k dataset, for D = 9 the precision and recall converge to about 0.35, a fac-311

tor of two worse than the CNN in the D = 5 case but a factor of 10 better than cli-312

matology. As with the D=5 cases, we found that the recall for D = 7 and 9 suffers more313

than the precision when the data set shrinks: with less events to learn from, the CNNs314

become more conservative and less likely to call an event. The recall depends on the false315

negative rate, and thus appears more sensitive to class imbalance. More data gives the316

network more true positive cases to learn from, apparently helping to overcome this chal-317

lenge.318

The low precision and recall values for smaller data sets (1k and 10k) do not bode319

well for training our CNN on ERA5 data, which will be discussed in detail in Section 7.320

For D = 5, there are 273 nascent blocked states in the ERA5 record, 84 of which per-321

sist into blocking events (see Table 3). This data amount falls between our 1k and 10k322

cases where data clearly limit performance. Consistent with our experience with the MM323

model, recall is the metric that suffers most from limited data, and stands to benefit the324

most from transfer learning.325

5 Feature analysis: What is our CNN using to predict blocking events?326

Before turning to forecasting in the realistic data regime, we ask what our best CNNs327

have learned to make these forecasts. Explainable Artificial Intelligence (XAI) is an ar-328

ray of techniques used to try to gain some understanding of the basis on which neural329

networks make predictions (Linardatos et al., 2020). In this section, we use SHapley Ad-330

ditive exPlanation (SHAP) value analysis to dissect the contributions of different atmo-331

spheric pressure levels and geographic areas that our CNN is using to make its predic-332

tions. We further construct a sparse model using the identified important features as in-333

puts to quantitatively justify their relative importance in the prediction process.334

5.1 XAI Method335

SHapley Additive exPlanation (SHAP) values, introduced by Lundberg and Lee336

(2017) and Shrikumar et al. (2017), draw inspiration from Shapley values in game the-337

ory (Lipovetsky & Conklin, 2001). In the domain of weather and climate science, SHAP338

values have found broad use, with applications ranging from Earth System model error339

characterization (Silva et al., 2022) to drought forecasting (Dikshit & Pradhan, 2021).340

Intuitively, given a function f : Rd → R (such as the conditional probability q
in Eq. 3), SHAP assigns an importance value ϕi to each feature xi of the argument x ∈
Rd, which combine additively:

f(x) = E[f(x)] +
d∑

i=1

ϕi(f,x). (7)

With no knowledge of x, the optimal prediction of f (in a mean-square sense) is the cli-341

matological average over the distribution of x: E[f(x)] . SHAP values quantify how much342

is gained beyond this baseline by incorporating information from each component i of343

x. The SHAP values ϕi(f,x) are unique for each sample of x, but features i for which344

|ϕi(f,x)| are large for most x (that is, a large average SHAP value) can be singled out345

as important, or useful, for the prediction of f(x). SHAP values possess advantageous346

theoretical properties as well, and we refer the reader to Lundberg and Lee (2017) for347

a detailed theoretical analysis. In this study, SHAP values are computed using the Python348

package DeepSHAP (Chen, 2022). The function f(x) is taken as the estimated conditional349
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Figure 5. Composite maps of SHAP values, ϕ, of geopotential height at 200, 500, and 800

hPa, for true positive cases, i.e., when the CNN accurately forecasts a persistent blocking event.

The unit is the probability per feature (Z at a given location and pressure level) of a positive

forecast (see equation 7), indicating the feature’s average incremental contribution to the CNN’s

confidence that the nascent blocked state will evolve into a persistent blocking. The boundaries

of the most important regions learned by the CNN are marked by solid lines and denoted region

1 (Florida, black), region 2 (north Atlantic, blue), region 3 (northeastern North America, green)

and region 4 (Iceland, red) .

probability q̂(x) computed by the CNN, i.e., the probability, according to the CNN, that350

the blocked state will extend ≥ D days, leading to a blocking event.351

5.2 Results352

Fig. 5 shows the composite of SHAP values for true positive data. Because few nascent353

blocks persist for D = 5, 7, or 9, the climalogical probability of a persistent event E[q̂(x)] =354

0.21, 0.096, and 0.044, respectively. For our CNN to call a positive event, we require the355

conditional forecast probability q̂(x) to be larger than 0.5. Hence a positive (negative)356

value of ϕi(q̂,x) indicates that knowing the geopotential height anomaly at this level and357

location increases (decreases) the likelihood of a positive event. Therefore, the shading358

in Fig. 5 can be interpreted as the average influence of each grid point for the CNN to359

successfully predict a long-lasting blocking event. For the averages over each region, the360

standard deviations for Z200, Z500, and Z800 are 0.039, 0.026, and 0.028, respectively,361

with a roughly symmetric distribution, indicating that the SHAP value analysis in Fig.362

5 represents the overall sample behavior, rather than being skewed by outliers.363

The SHAP composite is approximately uniformly non-negative because it is based364

only on true positive events: additional information should always increase the forecast365

probability. This indicates that the CNN has been well-trained to only use geopotential366

height information that improves the blocking event probability, and suggests it has iden-367

tified robust features that herald a persistent block. A composite based on true nega-368

tive cases (not shown) reveals similar patterns, but of the opposite sign.369

The first thing to notice is that anomalies upstream from the blocking region (to370

the west) are more valuable than other regions for predicting the persistence of the blocked371

state. Moreover, the commonality among different pressure levels reflects the relatively372
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barotropic nature of the MM model. In general, however, the CNN prediction relies most373

on the upper level flow (200 hPa).374

The SHAP values emphasize four distinct regions in a quadrupole arrangement to375

the west of the Atlantic blocking region, as marked in Fig. 5. We chose these regions to376

encapsulate high SHAP values using the following algorithm: after objectively identi-377

fying regions where SHAP values exceeded a set threshold, we defined boundaries by hand378

with the goal of enclosing these regions across all three levels within the smallest encom-379

passing rectangle. While part of the goal of choosing these regions was to build a sparse380

predictor in the next section, they give us physical insight on their own.381

The meaning of the SHAP values can be more easily interpreted with the aid of382

composites of the 3341 true positive events (Fig. 6), which show us the sign of anoma-383

lies that favor persistence. Positive geopotential anomalies in region 1 (black, centered384

over Florida) and 4 (red, over Iceland, just east of the blocking region itself) at the on-385

set of blocking indicate to the CNN that a block will persist, while negative anomalies386

over Regions 2 (blue, North Atlantic Ocean) and 3 (green, northeast US) also favor per-387

sistence.388

Regions 2 and 4 project onto opposing centers of action of the North Atlantic Os-389

cillation (NAO). They indicate that a more negative NAO state at the onset of block-390

ing increases the likelihood of a persistent block. Previous studies have also found that391

blocks tend to be more persistent when the NAO is negative (Barnes & Hartmann, 2010).392

While a blocking pattern off Europe projects weakly onto the NAO itself, SHAP anal-393

ysis indicates that the wider structure of the pattern is important. Regions 1, 3, and 4,394

on the other hand, appear to be part of a wave train arching southwest from the block-395

ing region. Their importance suggests that downstream development of a wave packet396

propagating along the jet stream helps drive persistent blocking events in the North At-397

lantic.398

6 Building a sparse model with logistic regression399

In quantifying the relative importance of the geopotential height as a function of400

location, the SHAP values suggest there is potential for dimension reduction. The CNN401

did not rely significantly on the information about Z in the large grey regions downstream402

of our target blocking area in Fig. 5 to predict the potential persistence of a nascent block-403

ing anomaly. Intuitively, conditions over central Asia will take some time to affect the404

flow over the North Atlantic, and are mostly irrelevant for a forecast at 5 day range.405

To gain more physical insight into the utility of the SHAP values, and so gain con-406

fidence in our CNNs, we explored a simplistic dimension reduction approach focused on407

the regions highlighted in Fig. 5. Our aim was not to achieve the ideal dimension reduc-408

tion, but to provide physical insight. Thus we ask: how well can one predict the persis-409

tence of a nascent block given only the very coarse information about the flow provided410

by the average geopotential height within these regions at the three levels?411

For these simple models, we computed the local mean of Z200, Z500, and Z800412

for each of the four rectangles shown in Fig. 5, resulting in 12 time series. We then ap-413

plied logistic regression with all possible combinations of these 12 features for subsets414

of dimension up to 5, i.e., for dimension 1, fitting a logistic function with each time se-415

ries alone, for dimension 2, all possible combinations of two time series, and so forth. The416

results for the sparse models with the best predictive skill on the test set are illustrated417

in Fig. 7(a). The horizontal axis denotes the combinations of variables that achieve the418

predictive scores shown in the figure.419

We draw three key conclusions from Fig. 7(a). First, to predict the persistence of420

a blocked state, the best one-dimensional feature is Z200 in region 1, over Florida and421
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Figure 6. Averages of nascent blocking states that evolve into persistent blocking events

(T = 1, y = 1) of (top row, a-c) MM dataset and (bottom row, d-f) ERA5. The colorbar rep-

resents values of geopotential height anomalies normalized by the standard deviation at each

location and height. The white dashed line indicates the 0.05 significance level for a one sample

t-test of the null hypothesis that the expected value is zero. The box areas identified by SHAP

analysis lie in statistically significant regions. Regions that are not significant are shaded by

white. For MM model dataset (the top row), most of the regions are statistically significant,

while for ERA5 dataset (the bottom row) most of the regions are not statistically significant.
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Figure 7. (a): Sparse model predictive skill on the test data set. The horizontal axis repre-

sents the dimension d of the sparse model from 1 to 5, with labels showing the combination of

variables (“R1” = “region 1”) that achieves the best predictive skill among all combinations of d

variables. (b) Conditional probability of a persistent block, q, as a function of mean normalized

geopotential height anomaly at 200 mb over region 1 and at 500 mb over region 4 (the second

column of (a)). (c) The marginal density (likelihood of observing these anomalies) as a function

of the same variables. Densities below 10−5 are cut off.

the Gulf and upstream of the block, not Z500 in region 4, the Z−field nearest to the block.422

Second, the combination of Z200 in region 1 with Z500 in region 4 forms a two-dimension423

model (shown in Fig. 7(b)) that already recovers a recall value of 0.75—it captures three424

quarters of all blocking events—with a precision of 0.44, twice the climatological rate.425

The precision and recall of the full CNN, however, are 0.87 and 0.70. This leads us to426

the third key message: there is a large discrepancy in precision between CNN and logis-427

tic regression. Even with 5 predictors, the precision of our sparse model is only 0.5.428

The poor precision indicates that the sparse model makes too many false positive429

predictions. This could suggest that the decay of the Atlantic blocked state is a more430

nonlinear dynamical phenomenon, which cannot be modeled as a simple linear statis-431

tical model. A CNN can capture these nonlinearities more effectively than sparse regres-432

sion, which is consistent with previous research which found North Atlantic blocks are433

associated with nonlinear processes (Evans & Black, 2003). It could also indicate that434

more subtle features outside these 4 centers (and variation within these regions) are im-435

portant. Fig. 5 indicates that the CNN uses information across all of the North Atlantic,436

eastern North America, and even off the west coast of the US, to make skillful predic-437

tions.438

To explore the effectiveness of the two-dimensional sparse model, we visualized the439

conditional probability of a block persisting, q, projected onto this simple subspace (shown440

in Fig. 7(b)). For example, the lightest pink region, corresponding to q ≈ 0.5 indicates441
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that if, at the onset of blocking, Z at 200 hPa over region 1 (Florida) is particularly high442

or Z at 500 hPa in region 4 (Iceland) is abnormally high, the system has a roughly 50%443

chance of evolving into a persistent block, more than double the climatological rate of444

21%. In the red region at the top right, where both of these regions exhibit abnormally445

high pressure, the chance of a persistent block increases to near 100%.446

Fig. 7(c) shows the likelihood of observing these Z200 and 500 anomalies. Most of-447

ten, the system exists in the middle of the diagram, where the probability of a blocking448

event hovers near or below the climatological value. The most likely state that exhibits449

a high chance of a block lies along the diagonal from the upper left to the lower right,450

with moderately high Z200 and 500 anomalies. The states in the top right corner, for451

which a persistent block is nearly certain, are very rare.452

The sparse models suggest physical links between blocking events and the upstream453

flow. The Atlantic blocking region lies at the end of the Atlantic storm track (Michelangeli454

& Vautard, 1998). Persistent blocks, at least in the MM model, are favored when there455

is enhanced wind off the east coast of the US (high pressure over Florida, region 1) and456

low pressure over regions 2 and 3 (which are highlighted in the higher dimensional sparse457

models). This displaces the climatological winds upstream of the blocking region equa-458

torward. This will modify the input of storm activity into the blocking region, consis-459

tent with prior studies that have highlighted the relation between the storm track and460

blocking events (Zappa et al., 2014b; Yang et al., 2021).461

7 Extending to ERA5 using Transfer Learning462

Given sufficient data, it was possible to construct a CNN that skillfully forecasts463

the maintenance of blocking events in the MM model. However, the ERA5 data from464

December, January and February (DJF) between 1940-2022 exhibit only 273 nascent blocked465

states in our Atlantic region of focus. Unfortunately, this low-data regime is where we466

see a significant degradation in performance in Fig. 4. The curve associated with the tra-467

jectory of 10k days (699 nascent blocked states) plateaued at lower values for both the468

precision and recall. With only 1k days (63 nascent blocked states) performance was poor,469

and the learning unstable, oscillating significantly across epochs.470

The class imbalance between Y = 0 and Y = 1 adds to the difficulty (see Tab. 3),471

particularly when longer blocks are considered. An extreme example is the set of block-472

ing events that last ≥9 d: there are only 18 such events in the reanalysis record out of473

273 data points. Such a small sample of positive data can hardly support any meaning-474

ful training, and makes it impractical to get meaningful uncertainty bounds on perfor-475

mance. In a standard training-test data split with a ratio of 90:10, only around 2 pos-476

itive events typically fall in the test set, making it challenging to robustly assess the skill.477

When training on the limited number of events in the reanalysis, a CNN can more478

easily suffer from overfitting, where the network uses ‘noise’ (unrelated features) to clas-479

sify blocking events. Overfitting can be diagnosed when the performance on the test set480

diverges from the training set. Yang and Gerber (submitted) found that the oversam-481

pling strategy used so far in this study was more prone to overfitting than a weighted482

loss function strategy (Johnson & Khoshgoftaar, 2019). With this latter strategy, one483

emphasizes the rare class (in our case, positive events) by increasing its weight in the loss484

function. In our remaining experiments, we weighted positive and negative events inversely485

to their occurrence rate.486

7.1 Direct training487

The scarcity of events makes direct training (DT) on ERA5 blocks challenging. In488

our study of the MM model data, we had the luxury of a large test data set (which we489
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Threshold Y = 1 Y = 0

≥ 5 d 84 189

≥ 7 d 36 237

≥ 9 d 18 255

Table 3. The statistics of ERA5 dataset in 1940-2022 DJF with T = 1.

intentionally kept the same for fair comparison of the different CNNs), even for the case490

with only 1k training days. For ERA5 data, we use cross validation (Goodfellow et al.,491

2016) to make the best use of the smaller dataset. The limited number of states were492

partitioned into training and test sets in ratios of 90:10; we also tried 80:20, and the re-493

sults were similar (not shown). These splits were chosen to balance two difficulties: a small494

training set can prevent robust learning, while a small test data set limits accurate eval-495

uation, even for a well-trained model.496

To proceed, we first reduced the resolution of the ERA5 data to a comparable size497

of the MM output, considering geopotential height on the same three levels at the same498

coarse resolution. Reducing the resolution allowed us to use the same CNN architecture,499

and made transfer learning possible (as discussed below). It also helped avoid overfit-500

ting, reducing the number of input variables relative to the number of events. Then we501

created the test-train splits, yielding 10 cross validation sets with distinct test events.502

Finally, for each test-train split, we trained and evaluated 10 CNNs, where variations were503

confined to random weight initialization and shuffling of training data.504

Providing meaningful uncertainty on the precision and recall statistics from direct505

training, shown in the left column of Fig. 8, is challenging. As the 10 CNNs trained on506

each train-test split are not independent and identically distributed (IID), we first av-507

erage the skill scores within each split. The 10 test sets, however, can be viewed as IID508

samples. The solid lines and shades respectively represent the mean and two-standard509

deviation bounds of the precision and recall, as a function of epoch, across the 10 splits.510

For 5 d blocks, a CNN trained by DT can beat the climatological forecast, albeit511

only modestly. Given the small testing data set (27 nascent blocks, of which roughly 8512

persist into events), it is important not to put too much stock in the best possible per-513

forming network, for CNN can get lucky on a small sample size. The average performance514

quantifies the potential skill more reliably. On average, a CNN can achieve a precision515

of approximately 0.45: when it calls a persistent blocking event, 4-5 out of 10 times it516

is correct, as compared to about 3 of 10 in the climatology. The recall was modestly bet-517

ter, the network only missing 4 of 10 actual events, while a climatological forecast would518

miss 7 of 10.519

We also explore 7 d events, where only 13% of nascent blocks evolve into 7+ d events.520

Again, the average CNN modestly beats the climatological forecast in terms of precision:521

1/5 of the cases it calls evolve into persistent events, roughly double the success rate by522

a guess with a Bernoulli random variable. The recall was initially deceptively high (the523

network captured 5 of 10 blocks), but this skill rapidly decreased with training. This was524

due to the fact that CNNs at early stages of DT call too many events. As it trains fur-525

ther, it reduces the forecast rate, declaring fewer false positives at the expense of miss-526

ing more events.527
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7.2 Transfer learning528

Transfer learning (TL) has found broad application in atmospheric science, such529

as detecting gravity waves (González et al., 2022), improving extreme heatwave forecasts530

in climate models (Jacques-Dumas et al., 2022), subgrid-scale turbulence parameteriza-531

tion (Subel et al., 2021), image restoration (Guo et al., 2022) and parameter retrieval532

from raw dew point temperature profiles (Malmgren-Hansen et al., 2018).533

TL involves pre-training a model on a larger dataset that is similar to the dataset534

of interest (source domain), then fine-tuning the model on the smaller target dataset (tar-535

get domain). This approach is particularly beneficial when labeled data for the target536

task is limited, as it allows the model to exploit learned features and representations from537

the larger dataset to enhance its performance on the smaller dataset. With this strength,538

TL has shown its power in forecasting, combining the data from a climate model (Rasp539

& Thuerey, 2021) or a dynamical model (Mu et al., 2020) with the observational record540

to improve medium-range weather forecasting and ENSO prediction.541

In this section, we apply TL to leverage our MM dataset to predict events in the542

reanalysis data. As a quasi-geostrophic model, MM has complexity between full climate543

models (e.g., Rasp & Thuerey, 2021) and low order models (e.g., Mu et al., 2020) used544

in previous transfer learning studies. The overall process is to first ‘pre-train’ a CNN on545

the MM model dataset, learning to capture the characteristic features of blocking. While546

significantly simplified, the MM model is skillful in representing atmospheric variabil-547

ity (Lucarini & Gritsun, 2020), but more importantly provides extensive positive and548

negative cases to learn from, supporting optimal CNN training, as demonstrated in Sec. 4.549

After pre-training, our CNN is then fine-tuned on the ERA5 dataset, where the weights550

are modified to account for biases in the MM model, and the parameter scales are cal-551

ibrated.552

In most applications of TL, only the weights in the last few layers of a neural net-553

work are fine-tuned on the target domain (Yosinski et al., 2014; Hussain et al., 2019; Talo554

et al., 2019). Following this convention, we only retrain the last layer of the CNN on ERA5555

while keeping the other layers frozen. This allows the CNN to correct biases it inherits556

from MM, but not to fall back into the poorly constrained limit we reached with direct557

training. We also tried retraining other single layers, but retraining the last layer per-558

formed the best. To avoid overfitting, we set the learning rate to 1/10 the learning rate559

of pre-training.560

We tested different lengths of pre-training and then evaluated the performance of561

the resulting models with the peak precision and recall in the transfer-learning phase.562

The results show that CNN parameters taken at earlier pre-training epochs show bet-563

ter peak performance after transfer learning (results not shown). This suggests that over-564

fitting on the source domain cannot be fully corrected by fine-tuning on the target do-565

main. For the displayed results in Figs. 8, 9 and 10, we use a pre-training of 2 epochs566

for D = 5, and 1 epoch for D = 7. Given the 1000k days of MM integration we had567

at our disposal, this means that the neural network has explored more than 70,000 unique568

nascent blocking states (all of them twice, for D = 5) before seeing any of the 273 events569

in ERA5.570

We follow a similar procedure as with DT to assess the ensemble-average perfor-571

mance. We pre-train 10 CNNs with the 1000k-day MM dataset; the only differences are572

due to randomness in the initialization and training data shuffling. We then carry out573

a 10-fold cross-validation procedure with 90:10 splits: for each split, we perform TL fine-574

tuning on the 10 pre-trained CNNs. We compute the mean precision and recall for each575

split. The results in the TL columns of Fig. 8 show the mean and 2-standard deviation576

bounds across all the splits.577
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Compared to DT, TL begins with a higher precision but lower recall due to pre-578

training. With additional fine-tuning, the precision stays almost unchanged, while the579

recall grows markedly. The network is able to increase the number of events that it can580

capture (lowering the number of false negatives) with minimal degradation in reliabil-581

ity of its forecast (that is, only slightly increasing the false positive rate).582

Uncertainty in the precision is dominated by differences in the true positive events583

between the splits; consequently, the 2-standard deviation error bounds are compara-584

ble for DT and TL. The recall is less sensitive to differences among the splits, however,585

and at least for the D = 5 case, there is noticeably less spread across the splits with586

transfer learning. This is understandable because recall, by definition, doesn’t depend587

on the positive rate of the test dataset, which varies a lot for small data sets (around 27588

states in each test set after splitting). On the other hand, precision relies on the posi-589

tive rate of the test dataset, so it has more intrinsic variability.590

We still evaluate the overall performance by Eq. (6). Focusing first on D = 5 events,591

the best mean performance with DT is a precision of 0.45 and recall of 0.61, which is re-592

alized at Epoch 3. With TL, we achieve an average performance with a similar preci-593

sion of 0.45 and higher recall 0.82 (at Epoch 4). A noticeable advantage of TL is the sig-594

nificantly reduced variance in recall compared to DT, indicating TL’s superior robust-595

ness in prediction, attributed to its enhanced capacity for capturing predictive features.596

For D = 7 day events, the best mean performance with DT is a precision of 0.21 and597

recall of 0.48, achieved after 3 epochs. TL, however, achieves a precision of 0.22 and re-598

call of 0.76 at Epoch 6.599

To ensure that these gains in recall are statistically significant, we conducted a Wilcoxon600

signed-rank test (Conover, 1999). Fig. 9 shows histograms of the difference in precision601

and recall between direct training and transfer learning. For example, each of the 10 val-602

ues in the histogram for D = 5 is defined for a specific train-test split, evaluated by sub-603

tracting the mean precision (recall) of 10 randomly initialized TL models taken at Epoch604

4 from the mean precision (recall) of 10 randomly initialized DT models taken at Epoch605

3. The spread here stems primarily from the fluctuation in 10 small-size test sets, not606

uncertainty in the networks due to randomness in training. The values for small-size test607

sets are taken at the same epoch of the best mean performance.608

The average recall with TL surpasses that of DT by 34% (p = 0.001) for 5 d events609

and by over 50% (p = 0.002) for 7 d events. While there is not a significant difference610

between the TL and DT precision, it is critical that transfer learning was able to improve611

the recall without sacrificing precision. One could easily inflate the recall by declaring612

more positive cases, but without any skill, the precision would suffer and approach the613

climatological rate.614

7.3 What has transfer learning learned?615

When we show ERA5 events to CNNs first trained on the MM dataset, what ex-616

actly is the CNN learning to improve the recall? For example, do the key geographical617

regions and levels (Fig. 5) retain the same level of significance? It is reasonable to ex-618

pect that this might not be the case. In the MM dataset, the duration of the Atlantic619

blockings could be related to upstream flow, specifically to the structure of the wave train620

at the blocking onset. The mechanism for blocking in the real world is more complicated,621

and the correlated pattern may shift, intensify, and/or weaken. To address these ques-622

tions, we compare the SHAP values of the pre-trained CNNs when directly applied to623

ERA5 (i.e., without fine-tuning) to the SHAP values of the CNN after 4 epochs of fine-624

tuning, as shown in row a and row b of Fig. 10. The most evident difference after fine-625

tuning is a decrease in the amplitude of the SHAP values. This is because the climato-626

logical rate of positive blocking events in ERA5 is higher: almost 1/3 of nascent blocked627

states persist for 5 d in ERA5, compared to about 1/5 in MM. As the expected fraction628
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Figure 8. Comparison of CNN forecast skill between direct training (DT, blue) and transfer

learning (TL, red). Panels (a,b) compare the precision of DT training epoch and of TL fine-

tuning epoch for D=5 (standard blocking events). (e,f) compare the recall of DT training epoch

and of TL fine-tuning epoch for D=5. (c,d) compare the same quantities as (a,b) for D=7. (g,h)

compare the same quantities as (e,f) for D=7 (longer blocking events). The black dashed line in-

dicates the climatological event rate p. The shading shows a two-standard deviation uncertainty

bound, as detailed in the text.
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Figure 9. Histograms of the performance gap between the best performing CNNs obtained

with transfer learning versus the best performing CNNs obtained with direct training, for pre-

cision and recall. (a) is the performance gap of precision for 5 d events. (b) is that of recall for

5 d events. (c) and (d) are of precision and recall for 7 d events. “Best performing” was deter-

mined by stopping the training procedure at the epoch when the best overall balance between

high precision and recall was achieved in the mean (solid lines in Fig. 8). The 90:10 split yields

10 different CNN scores, and the differences between pairs of TL and DT based CNNs, scored on

the same test split, are shown.
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of events is larger, q̂(x)−E[q̂(x)] from equation (7) will be smaller, and the SHAP value629

increments ϕi(q̂,x) will tend to be smaller. It is the sum of the SHAP values that build630

up the probability for a Y = 1 prediction; for a more likely event, one does not need631

to build up the probability as much, so fine-tuning quickly adjusts the weights.632

To assess the more subtle change in the relative contribution of each feature on the633

predicted result after transfer learning, we show the difference in the normalized com-634

posite map ∆ϕ in row d of Fig. 10. ∆ϕ is defined for each input i (i.e., geopotential height635

Z at a particular latitude, longitude, and pressure level) by ∆ϕi ≡ max

(
ϕ
TL
i

1
d

∑d
j=1 ϕ

TL
j

, 0

)
−636

max

(
ϕi

1
d

∑d
j=1 ϕj

, 0

)
. The maximum function is used to avoid spurious negative SHAP637

values, which should not arise in a composite of true positive events, as discussed in the638

context of Fig. 5. The normalization makes the total integral of the SHAP values the639

same for both cases, so that one can focus on where the CNN is using information, as640

opposed to the overall reduction of the SHAP values driven by the difference in rates.641

The “normalized” SHAP values increase mainly in region 4 (the region right around642

the block), and additionally over Quebec and Atlantic Canada, a region less used for pre-643

dictions with the MM model. The SHAP values decrease in a relative sense over regions644

1 (Florida and the Gulf), 2 (North Atlantic Ocean), 3 (northeastern North America),645

and central North America. This change in relative importance reveals a general de-emphasis646

of the regions farther upstream and an increased emphasis on regions more immediately647

upstream. This indicates that while it is still upstream information that is most impor-648

tant for predicting a persistent blocking state in ERA5, the structure and westward ex-649

tension of the wave train has changed.650

For further insight, we compare the SHAP value patterns with a more traditional651

method for understanding predictability: composite analysis. Fig. 6 shows composite maps652

of nascent blocks that evolve into persistent events in the MM model and ERA5. Per-653

sistent blocks are associated with wave activity south and west of the blocking region654

in both the model and reanalysis, but the pattern shifts. The wave train in MM initially655

arcs westward before turning southward, with a strong center of high pressure east of656

Florida, while the wave train in ERA5 arcs more to southwest at first, then further west-657

ward.658

The SHAP values change over Quebec, capturing this shift in the wave train, but659

overall the CNN seems to shift to more local information with transfer learning. We spec-660

ulated that the dry, quasi-geostrophic MM model overemphasizes long-range teleconnec-661

tions. It only captures deformation scale dynamics, and this only at low resolution, and662

so lacks smaller, local modes of instability, e.g., instability associated with latent heat663

release due to precipitation, present in our atmosphere. The CNN makes more use of these664

local features when predicting the persistence of blocks, but still focuses on the upstream665

flow, consistent with our intuition.666

Finally, we contrast the feature importance analysis of the CNN with transfer learn-667

ing (Fig. 10 row b) to that of the CNNs trained only directly on the ERA5 output (Fig. 10668

row c). DT struggles to develop nuanced features with limited data. The SHAP values669

with DT are also more barotropic than those with TL. Moreover, in general, the SHAP670

values with TL capture finer details across a wider spatial range, while the SHAP val-671

ues with DT are more localized. Geopotential height anomalies over Iceland, especially672

in the Z500 map, are more emphasized for TL than DT. The same applies to upstream673

anomalies over Florida and the Gulf of Mexico in the Z200 map. Additionally, the im-674

portance of geopotential height anomalies over the Atlantic, immediately upstream of675

the target region west of north Africa, is neglected in DT, though it appears in TL. This676

is closely correlated to the blocking event prediction from the ERA5 composite in Fig. 6,677

which does not show as strong composite Atlantic anomaly as in the MM model.678
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Figure 10. Rows 1 through 4 are composite maps of SHAP values, ϕ, for geopotential height

(200, 500, and 800 hPa), averaged over true positive predictions of blocking events in ERA5 by

the CNNs listed below. This is the same quantity shown in Fig.5, but now applied to ERA5

events. Row a shows ϕ
MM

for the pre-trained CNNs before transfer learning (i.e., networks that

have only learned from MM, but applied to ERA5). Row b: ϕ
TL

of these pre-trained CNNs after

fine-tuning. Row c: ϕ
DT

of CNNs directly trained on ERA5 (i.e., networks that never saw the

MM events). Row d shows the change in the SHAP values, ∆ϕ, between the first two rows, after

normalization as detailed in the text. This quantifies the effect of transfer learning: positive val-

ues indicate that information from the region became more important for the prediction, while

negative values indicate that anomalies in the region became less important for prediction.
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In summary, the superiority of CNNs trained with transfer learning, as compared679

to direct training, appears to lie in their ability to leverage learned features from the pre-680

trained dataset, helping the network to take advantage of information further upstream681

of the blocking region. In either case the precision is modest: when the networks call an682

event, the rate of success is at best 50% higher than a näıve climatological forecast. Pre-683

training the network, however, has a significant impact on the recall, increasing the fore-684

cast rate to capture more events without decreasing the precision.685

8 Conclusion686

The impact of data-driven science on weather and climate science has grown sub-687

stantially in recent years. In this paper, we suggest two data-driven approaches to help688

predict and understand atmospheric blocking events. First, given sufficient data, con-689

volutional neural networks (CNNs) are capable of identifying subtle features that dif-690

ferentiate short-lived blocked states from those that persist for an extended period. More-691

over, Explainable Artificial Intelligence methods, like SHAP feature importance anal-692

ysis, can provide insight into what features matter most to this differentiation. Second,693

transfer learning has the potential to make data-driven forecasts possible for our atmo-694

sphere, making the most of the limited extreme events in the observational record by lever-695

aging insight from longer, albeit imperfect, numerical simulations.696

We began in a data-rich regime with the idealized Marshall-Molteni model, show-697

ing that a CNN can accurately predict the persistence of North Atlantic blocks in terms698

of both precision and recall. Leveraging SHAP feature importance analysis, we identi-699

fied crucial regions for the prediction of persistent blocked states, given a nascent high-700

pressure anomaly. Our results suggest that incorporation of both local and non-local fea-701

tures is important for prediction skill.702

To validate our discovery, we constructed a two-dimensional model that used only703

upstream anomalies over Florida and the Gulf of Mexico, and anomalies immediately704

upstream of the blocking region. The sparse model exhibited precision significantly above705

the climatological rate and recall nearly as good as the full CNN. It struggled, however,706

with false positives (and hence exhibited low precision relative to the CNN) which could707

not be improved within the log linear logistic regression framework. This suggests the708

CNN learns non-trivial relations in the upstream flow, extending all the way to the Pa-709

cific, to better discriminate between short-lived and long-lived blocks.710

The challenge of conducting direct training on ERA5 data stems from the paucity711

of available events. Small training and test datasets make training and evaluation dif-712

ficult. With the MM model, we observed a systematic degradation in forecast skill when713

the training data was limited, particularly for the recall statistic. Through transfer learn-714

ing, we leverage the abundance of data generated by simplified dynamical models to en-715

hance real-world forecasting. By pre-training a CNN on the MM model dataset and re-716

training the deepest layer on the ERA5 dataset, the recall was improved by 34% com-717

pared to a CNN developed with direct training alone for 5 d events, and over 50% for718

more extreme 7 d events, without any loss of precision.719

In addition to advancing predictive skill, transfer learning in combination with SHAP720

analysis allowed us to compare the predictive features between weather systems in ERA5721

and the idealized quasigeostrophic model. The bottom row of Fig. 6 reveals biases in the722

MM model, which appears overly dependent on upstream features over Florida and the723

Gulf of Mexico relative to blocks in ERA5. This approach provides a new angle of how724

a machine learning approach could guide the diagnosis and quantification of model bi-725

ases. This said, the success of transfer learning results underscores the MM model’s abil-726

ity, despite its simplicity, to capture features that are important for predicting the per-727

sistence of blocked states in the real world. We believe that greater strides could be made728
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by pre-training on a more advanced climate model, or even hindcasts in the subseasonal-729

to-seasonal (S2S) data set (Vitart et al., 2017; Finkel et al., 2023). We expect our re-730

sults will help inform large-scale efforts to incorporate AI into operational forecasts, such731

as the AIFS model (Lang et al., 2024), which already employs transfer learning in a dif-732

ferent form.733

The methods presented here are not limited to the context of blocking events, and734

can be generalized to the study of other challenging natural phenomena, especially in735

scenarios where data may be limited, and the potential influencing factors are complex736

(e.g. heat domes (Li et al., 2024)). An immediate future goal is to push further on the737

physical and dynamical mechanisms that causes the differences in prediction mechanisms738

for ERA5 and MM model. Another goal is to adapt the present approach to investigate739

the statistical behavior and mechanisms for the onset of the blocking events.740

Appendix A Marshall-Molteni Model741

The Marshall-Molteni (MM) model state is specified by potential vorticity qj in
three layers of the atmosphere, j = 1, 2, 3, corresponding to pressure levels 200, 500,
and 800 hPa. qj evolves according to quasi-geostrophic dynamics as

∂tqj + J(ψj , qj) = −Dj + Sj (A1)

where ψj is the streamfunction in layer j, related to qj as

q1 = ∆ψ1 − (ψ1 − ψ2)/R
2
1 + f (A2)

q2 = ∆ψ2 + (ψ1 − ψ2)/R
2
1 − (ψ2 − ψ3)/R

2
2 + f (A3)

q3 = ∆ψ3 + (ψ2 − ψ3)/R
2
2 + f(1 + h/H0). (A4)

Here, ∆ is the horizontal Laplacian operator, R1 = 761 km and R2 = 488 km are the
Rossby deformation radii in layers 1 and 2, f = 2Ωcosϕ is the latitude-dependent Cori-
olis parameter, and h is the orography of the surface, rescaled by the constant H0. The
operator Dj combines all dissipative terms, including radiative damping, surface friction
and hyper-diffusion to crudely parametrize small scale diffusion, but is also necessary for
numerical stability:

−D1 =(ψ1 − ψ2)/(τRR
2
1)−R8∆4q1/(τHλ

4
max)

−D2 =− (ψ1 − ψ2)/(τRR
2
1) + (ψ2 − ψ3)/(τRR

2
2)−R8∆4q′2/(τHλ

4
max)

−D3 =− (ψ2 − ψ3)/(τRR
2
2)− EK3 −R8∆4q′3/(τHλ

4
max).

(A5)

The forcing, Sj is computed from observed data to inject energy into the system and give
the model a realistic mean state:

Sj = J(ψj , qj) +Dj (A6)

The data to construct Sj were drawn from the 1983–1992 winter (DJF) climatol-742

ogy of the ERA40 reanalysis provided by ECMWF.743

Appendix B Acronyms and definitions744

Here we list the important acronyms and definitions in this paper for the conve-745

nience of the readers.746

• CNN: Convolutional Neural Network - A type of deep learning model particularly747

effective for analyzing visual data, using convolutional layers to automatically de-748

tect and learn patterns.749
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• SHAP: Shapley Additive ExPlanation - A method to explain the output of ma-750

chine learning models by attributing contributions of individual features based on751

cooperative game theory.752

• MM: Marshall-Molteni - Refers to the 3-layer QG model by (Marshall & Molteni,753

1993) related to atmospheric dynamics, often used in the context of studying large-754

scale weather patterns and teleconnections.755

• QG: Quasi-Geostrophic - A simplified model in geophysical fluid dynamics that756

describes large-scale atmospheric and oceanic flows, assuming a balance between757

pressure gradient and Coriolis forces.758

• XAI: Explainable Artificial Intelligence - A subfield of AI focused on making the759

outputs and processes of machine learning models transparent and understand-760

able to humans.761

• DG: Dole & Gordon index (Dole & Gordon, 1983)- An index developed by Dole762

and Gordon to quantify atmospheric blocking events, which are large-scale pres-763

sure systems that can disrupt normal weather patterns.764

• DT: Direct Training - A machine learning approach where a model is trained di-765

rectly on a specific dataset without additional pre-training or transfer learning tech-766

niques.767

• TL: Transfer Learning - A machine learning technique where a pre-trained model768

is adapted to a new but related task, leveraging the knowledge gained from the769

original task to improve performance.770

• Z: Geopotential height.771

• ZB(t): Anomalous geopotential height in our target blocking region in the North772

Atlantic, shown in Fig. 1.773

• T : Number of consecutive days of a blocked state.774

• M : Threshold of geopotential height anomaly in blocking events criteria.775

• D: Threshold of consecutive days in blocking events criteria.776

• X: Full model state vector.777

• Y : Indicator of whether a blocked state persisted.778

• q(x(t)): Conditional probability that a blocked state x(t) will persist.779

• L(q): Binary cross entropy loss function used for classification problem.780

• Precision: True positives
True positives+False positives781

• Recall: True positives
True positives+False negatives782

Open Research Section783

The data from the Marshall-Molteni model were generated using a Fortran code784

provided by Valerio Lucarini and Andrey Gritsun (Lucarini & Gritsun, 2020). The For-785

tran code, along with the Python code for computing SHAP values, transfer learning and786

producing plots is publicly available in the the open repository (Zhang, 2024). SHAP787

values were computed using the Python package DeepSHAP(Chen, 2022). The ERA5788

reanalysis datasets from ECWMF were used for data preprocessing and ML model train-789

ing and testing (Hersbach et al., 2020).790
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González, J. L., Chapman, T., Chen, K., Nguyen, H., Chambers, L., Mostafa, S. A.,864

. . . Yue, J. (2022). Atmospheric Gravity Wave Detection Using Transfer865

Learning Techniques. In 2022 IEEE/ACM International Conference on Big866

Data Computing, Applications and Technologies (BDCAT) (p. 128-137). doi:867

10.1109/BDCAT56447.2022.00023868

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.869

(http://www.deeplearningbook.org)870

Guo, Y., Wu, X., Qing, C., Su, C., Yang, Q., & Wang, Z. (2022). Blind Restora-871

tion of Images Distorted by Atmospheric Turbulence Based on Deep Trans-872

fer Learning. Photonics, 9 (8). Retrieved from https://www.mdpi.com/873

2304-6732/9/8/582 doi: 10.3390/photonics9080582874

Ham, Y.-G., Kim, J.-H., & Luo, J.-J. (2019, Sep 01). Deep learning for multi-year875

ENSO forecasts. Nature, 573 (7775), 568-572. Retrieved from https://doi876

.org/10.1038/s41586-019-1559-7 doi: 10.1038/s41586-019-1559-7877

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,878
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