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Abstract14

Machine learning for the parameterization of subgrid-scale processes in climate models15

has been widely researched and adopted in a few models. A key challenge in develop-16

ing data-driven parameterization schemes is how to properly represent rare, but impor-17

tant events that occur in geoscience datasets. We investigate and develop strategies to18

reduce errors caused by insufficient sampling in the rare data regime, under constraints19

of no new data and no further expansion of model complexity. Resampling and impor-20

tance weighting strategies are constructed with user defined parameters that systemat-21

ically vary the sampling/weighting rates in a linear fashion and curb too much oversam-22

pling. Applying this new method to a case study of gravity wave momentum transport23

reveals that the resampling strategy can successfully improve errors in the rare regime24

at little to no loss in accuracy overall in the dataset. The success of the strategy, how-25

ever, depends on the complexity of the model. More complex models can overfit the tails26

of the distribution when using non-optimal parameters of the resampling strategy.27

Plain Language Summary28

Subgrid-scale parameterizations are a part of climate models that represent effects29

of processes that cannot be directly modelled. In recent years, there have been many ef-30

forts to improve upon these parameterizations by applying machine learning techniques.31

Since these methods rely heavily on the dataset they are learning from, it is important32

to consider the frequency at which important events occur within the dataset because33

they are adept at learning frequent events at high accuracy but are prone to learning rare34

but important events at low accuracy. To remedy this data imbalance problem, we de-35

veloped a resampling methodology that can be easily adjusted by tuning just two pa-36

rameters. We find that a right combination of those parameters can improve the accu-37

racy of an ML model at the rare event regime while keeping the accuracy high in the fre-38

quent regime. However, a “wrong” combination can actually increase the errors at the39

rare event regime by overfitting to that regime.40

1 Introduction41

Machine learning techniques have been used to develop data driven parameteriza-42

tion of un- or under-resolved processes in climate models, including a comprehensive rep-43

resentation of all missing terms, either at once (Brenowitz & Bretherton, 2019) or sep-44

arately (Yuval et al., 2021), or specific processes, including gravity wave momentum trans-45

port (Chantry et al., 2021; Espinosa et al., 2022) and radiative transfer (Ukkonen, 2022).46

None of these attempts yielded a perfect sub-grid scale model, begging a general ques-47

tion: what can one do to improve a given data-driven parameterization? As these pro-48

cesses, and geoscience datasets more generally, are often high-dimensional and exhibit49

long-tailed distributions, a common problem is to properly learn rare and extreme events.50

This is particularly problematic if these extreme events have an outsized impact on the51

climate, or become more prevalent in a changing climate. How can we capture impor-52

tant but rare events from the tail of the distribution as best as possible given the dataset53

available to us? This is a data imbalance problem, and we propose strategies to com-54

bat it in this paper.55

Set imbalance is a common challenge in machine learning (ML). In binary classi-56

fication, the imbalanced dataset problem refers to a skewed distribution of the two tar-57

get classes in a dataset. A naive learning algorithm will inherit an asymmetric class rep-58

resentation in the dataset, and will typically produce classifiers that predict the minor-59

ity class with lower accuracy than it does for the majority class. These biased classifiers60

prove even more problematic when the minority class holds more importance or utility.61

As this combination of challenges is ubiquitous in real datasets, many methods that curb62
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and minimize biases that stem from imbalanced datasets have been developed, as reviewed63

by He and Garcia (2009) and Krawczyk (2016).64

Data imbalance poses difficulties for ML tasks outside of binary classification. While65

it is straightforward to extend methods for treating imbalanced datasets for binary to66

multi-class classification, it has proven more difficult to extend this for regression tasks.67

Here, one seeks to learn a function g from a set of inputs x⃗ to outputs y⃗ where the ex-68

ample pairs (x⃗, y⃗) is unevenly distributed. As with the classification problem, the task69

is particularly hard if we care especially about the behavior of g for rare pairs of (x⃗, y⃗).70

In this paper, we explore systematic methods for overcoming data imbalance in re-71

gression tasks, illustrating them with a case study of data driven parameterization grav-72

ity wave (GW) momentum transport. Gravity waves play an important role in forcing73

the large scale atmospheric circulation, but their small scale makes them challenging to74

properly represent directly. We seek a function g that maps vertical profiles of the re-75

solved wind, temperature, and GW source information within a column of an atmospheric76

model: x⃗, to the profiles of the grid scale momentum tendency by unresolved gravity waves77

associated with this large scale environment: y⃗. We assume limited resources, in that78

one cannot simply increase the size of the dataset or complexity of our model g to over-79

come the problem: the goal is to work with the data and model one has on hand.80

First steps have been taken towards deriving data-driven schemes for GWs by ex-81

ploring how well machine learning approaches can emulate existing, physics based pa-82

rameterizations (Chantry et al., 2021; Sun et al., 2023). Both studies found that data83

imbalance was challenging, particularly for capturing the momentum forcing by grav-84

ity wave excited by orography. Not only are most grid cells of a GCM flat, but even where85

there is topography, the waves themselves are highly intermittent. Here, we will focus86

on non-orographic waves, but the method is general and an ad hoc version of it was used87

by Sun et al. (2023) to emulate an orographic paramterization. More specifically, we build88

on the work of Espinosa et al. (2022), who emulated a physics-based GW parameteri-89

zation (GWP) scheme (Alexander & Dunkerton, 1999) hereafter referred to as AD99,90

with a deep neural network (NN) architecture called WaveNet. We continue this inves-91

tigation to illustrate our approach for improving a generic ML methodology. Exploring92

our method in the context of emulation also allows us to explore the ability of a scheme93

to generalize to different climates.94

The strategy involves two distinct steps. First, one must identify the data imbal-95

ance. This requires “domain knowledge” of the problem, to identify key metric(s) that96

quantify rare cases where errors in the data-driven scheme limit its effectiveness. As de-97

tailed in Section 2, we establish a wind range metric to identify rare cases where WaveNet98

enmulator systematically fails. On top of being rare, these are cases where the physics99

of AD99 scheme become more non-local, and so more challenging to learn.100

Once the data imbalance is identified, the second step is to treat it during model101

training and implementation, as detailed in Section 3. We illustrate two strategies at the102

learning stage, either to modify the sampling of training examples so that rarer cases are103

better represented from the start, or to leave the distribution as it is, but adjust the loss104

function to more strongly penalize mistakes on the rare cases. To construct a principled105

method for this rebalancing, we borrow a concept from histogram equalization: a lin-106

ear interpolation of the original distribution to a more uniform distribution parameter-107

ized by a scalar t which can be varied from 0, where no change is made, to 1, where the108

distribution is made completely uniform. The goal is to improve representation of the109

rare cases without losing skill on the central part of the distribution or overfitting the110

data in the tails, and the parameter t allows one to calibrate the degree of rebalancing.111

These strategies assume that the ML model has enough complexity to learn the112

complex nonlinear behavior described by physics of g, but the data imbalance encour-113
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ages the model to ignore rare samples and predominantly learn from the typical sam-114

ples. As we’ll show in Section 4.2.1, overfitting can occur when the ML method is too115

complex with respect to the amount of training data available. In addition to improv-116

ing the training of an ML scheme, one can mitigate data imbalance by applying a bias117

correction at the inference stage. This involves computing the mean bias of the ML model118

as a function of the relevant metric (the wind range in our case study of GWP emula-119

tion), and subtracting the bias from the output.120

The remainder of the paper is structured as follows. Section 2 illustrates how we121

identified data imbalance, Section 3 details modified training and bias removal methods122

to overcome this imbalance. Our case study is presented in Section 4. To demonstrate123

the generality of the method, we also introduce an alternative ML strategy, an Encoder-124

Dense-Decorder (EDD). We use our approach to improve both WaveNet and EDD. Fur-125

thermore, we illustrate how our approach can fail when the complexity of the ML method126

exceeds the data available, leading to overfitting. Section 5 concludes our study and out-127

lines possible future directions for this research.128

2 Identifying data imbalance129

A first step towards improving a data-driven parameterization – or more generally,130

any data-driven task – is to identify potential imbalances in the training set. This pro-131

cess requires detailed knowledge of the application, as one is searching for metrics to quan-132

tify rare cases that are important for the performance of the task. The process is straight-133

forward in low dimensional data sets, i.e., if one needs to differentiate cats from dogs,134

are the animals evenly distributed in the example data, but quickly becomes difficult in135

high dimensional datasets. Here, we illustrate an example where the input data has 83136

dimensions, but we seek a projection onto a 1D subspace that clearly identifies rare, but137

important, samples that need to be learned.138

Our goal is to improve a data-driven emulator of the single column AD99 gravity139

wave parameterization, as implemented in the Model of an idealized Moist Atmosphere,140

MiMA (Garfinkel et al., 2020), following the work of Espinosa et al. (2022). We direct141

the reader to Alexander and Dunkerton (1999) for details on the parameterization and142

Espinosa et al. (2022) and Garfinkel et al. (2020) for details on the atmospheric model,143

but briefly review the most salient points here.144

As in Espinosa et al. (2022), we use an integration of MiMA at triangular trunca-145

tion T42 resolution (corresponding to a ≈ 3◦ grid) with model parameters configured146

to produce a realistic representation of northern hemisphere climate by Garfinkel et al.147

(2020). The model is integrated for 60 years, and after discarding the first 20 years’ data148

as spin-up, we use years 21-30 for the training and years 56-60 for the validation set. Out-149

put from the model is saved 4 times a day, yielding over 1.1×109 samples, where each150

sample consists of vertical profiles of winds and temperature (the inputs), one for each151

column on a 128×64 longitude-latitude grid, and the parameterized gravity wave ten-152

dency as the output. For simplicity, we focus only on the zonal (East-West) gravity wave153

tendencies.154

AD99 is a multi-wave GW parameterization that adheres closely to the scheme es-155

tablished by (Lindzen, 1981), which assumes the conservation of wave action flux and156

wave-mean flow interactions under linear theory. The scheme determines GW momen-157

tum transport by launching a spectrum of non-interacting, monochromatic waves. Ther-158

modynamic breaking criteria determine when each wave breaks and deposits its momen-159

tum into the mean flow: waves tend to break when they near a critical level, where the160

speed of the large scale winds equals that of the GW, or when their amplitude becomes161

sufficiently large to overturn. This latter criteria is favored at upper levels where den-162

sity decays. Additional criteria account for waves that would be filtered out at the source163
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Figure 1. Left: Two zonal wind profiles sampled near the South Pole at different times in

the control integration; Middle: The physics based (AD99) computation of gravity wave momen-

tum deposition (GWD) associated with these two profiles in the left panel; Right: The GWD

output by the WaveNet emulator of AD99 for the same input profiles.

level (the nominal tropopause) or reflected downward. Important for our application,164

momentum carried by waves that do not break before reaching the model top are de-165

posited in the upper levels of the column, thereby preventing a leak of momentum through166

the model top (Shaw et al., 2009). A key simplification of the scheme is that the source167

spectrum is only a function of latitude, meant to capture a simple background of waves168

generated by convection, frontegenis, and orography.169

Physical intuition can be garnered from Figure 1, which shows two example wind170

profiles from an integration of the MiMA in the left panel, and the momentum tendency171

computed by AD99 in the center. The scheme also uses the temperature profile (not shown)172

to determine when convective overturning will lead to GW breaking, but winds are the173

most important for prediction. The blue profile exhibits a more typical case; we will de-174

fine ‘typical’ precisely below. Critical line wave breaking leads to deposition of easterly175

momentum in easterly shear zones, e.g., near 100 hPa, and conversely westerly momen-176

tum in westerly shear zones, e.g., near 1 hPa. The orange profile demonstrates a less typ-177

ical case with easterly flow in the troposphere below strong westerly shear throughout178

the atmospheric column. Westerly waves are filtered out by easterly winds at the source179

level (hence no westerly forcing), but the easterly half of the spectrum never experience180

a critical level. The scheme thus deposits them all near the model top.181

The right panel of Figure 1 provides anecdotal evidence that the WaveNet emu-182

lator does a reasonable job of capturing the momentum tendencies from the more typ-183

ical blue profile case, but fails rather spectacularly with the orange profile. As detailed184

by Connelly and Gerber (2024), WaveNet is good at capturing critical level behavior,185

but struggles to capture non-local effects on the momentum tendencies, both the impact186

of source level filtering and integrated behavior, where an absence of easterly shear al-187

lows waves to reach the top.188

We hypothesize that WaveNet’s emulation of AD99 in MiMA suffers from data im-189

balance, in that gravity wave breaking is most often associated with local critical lev-190

els. WaveNet learns this relationship well. Cases where the momentum forcing depends191
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on non-local behavior (e.g., when surface level filtering or low level critical levels remove192

part of the spectrum low in the atmosphere, or when a lack of critical levels leads to mo-193

mentum deposition near the model top) are more seldom seen, and so tend to be poorly194

captured the data-driven scheme. The challenge is to translate this physical intuition into195

an objective metric to identify the rarer cases dominated by non-local effects. The in-196

put space is 83 dimensional (zonal wind u⃗ and temperature T⃗ at 40 levels each, plus sur-197

face pressure, latitude, and longitude), but we want a single metric to sort the data. Af-198

ter significant trial and error we developed a simple “wind range” metric that captures199

many of these rare cases.200

The wind shear is a crucial quantity in computing GW forcing on the mean flow.201

Large shear at any given level favors wave breaking, as GWs over a wider range of phase202

speeds will experience a critical level. Profiles with large shear, particularly at lower lev-203

els, tend to exhibit non-local behavior, as the GW spectrum is rapidly depleted, rend-204

ing upper level critical levels moot. (This is to say, a second shear zone will not be as-205

sociated with GW breaking because waves have already broken below.) In addition, strong206

shear in one direction can lead to cases like that exhibited in Figure 1, where the mo-207

mentum conservation criterion leads to momentum tendencies near the model top, even208

if individual waves wouldn’t otherwise break there. An admittedly crude proxy metric209

we consider to represent the overall presence of shear is the wind range, the total span210

of winds throughout the atmospheric column. Formally,211

wind range =

(
max

i=1,··· ,nlev
ui

)
−

(
min

i=1,··· ,nlev
ui

)
. (1)212

The wind metric is illustrated by the arrows in the left panel of Figure 1. It suggests that213

WaveNet may struggle when the wind range is large (the orange profile). While this met-214

ric was motivated by the physical argument that these high shear cases are more chal-215

lenging to learn due to non-local effects, Figure 2 shows that these high wind range cases216

are rare as well.217

The wind range exhibits the two key features of data imbalance. First, the input218

data exhibits a long tailed distribution with respect to the wind range, and second the219

ML based emulator systematically struggles with the tail of this distribution. This is most220

clearly illustrated in Figure 2, which shows the distribution of errors for different val-221

ues of the wind shear. The spread of error increases superlinearly with respect to wind222

range. For profiles with a wind spread of 50 m/s, at the mode of the distribution, the223

error is the prediction of the drag is less than 5 m/s/day for over 90% of cases. For pro-224

files with range of 100 m/s, the error rates are only modestly worse, 85% of profiles ex-225

hibit an error less than 5 m/s/day. The percentage of profiles with errors less than 5 m/s/day226

decreases to 70% and 30% for profiles with wind ranges 150m/s and 200m/s respectively.227

Error rates at the 90 percentile are associated with 16 and 28 m/s/day, respectively, a228

full three to five times worse for cases at the mode of the distribution.229

Figure 2 motivates another, even simpler approach of addressing data imbalance:230

bias removal. The high absolute error rates for rare profiles with large wind range are231

in part associated with systematic mean biases in the prediction (not shown). In gen-232

eral, a well-trained ML scheme will have no bias in the overall mean, but it can system-233

atically under and over-predict profiles with respect to metrics like the wind range. For234

example, it may trivially under-predict the GW tendencies over the main part of the dis-235

tribution, but massively over-predict the tendencies at the tail. As discussed in Section236

3.3 one can remove these biases at the time of inference.237

For the remainder of the paper, we use the wind range metric, and the data im-238

balance it reveals, to improve the training and implementation of WaveNet and a related239

ML scheme. These methods are generic, and ready to apply once a user has identified240

the metric to quantify the imbalance. The better one can sort prediction errors in a high241
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Figure 2. Bottom panel shows the histogram of the dataset where each sample is represented

by its zonal wind range Eq. (1). Frequency is the number of samples in a bin relative to the total

number of samples. Top left: For each of the 100 equal-width bins of the histogram, we show 5th

to 95th absolute error percentiles at 5-percentile increments. Thus we can view the error spread

as a function of wind range. Due to noisy error statistics for samples with wind range >200 m/s,

we exclude those samples in the analysis in the following sections. Top right: The error per-

centiles for a select few bins show that larger errors are incurred more often as the wind range

increases.

dimensional dataset along a single (or at least a small number of) dimension(s), how-242

ever, the better one is positioned to use these strategies to improve the scheme.243

3 Treating data imbalance244

Our goal is to help the data driven scheme perform better on the tails of the dis-245

tribution without decreasing performance over the main part of the distribution. This246

makes the typical balancing act between “bias” and “variance” that one seeks with any247

machine learning task more challenging. Good performance requires a scheme that both248

learns the training data well (has low bias) and works equally well on new data (has low249

variance). By this, we mean that the skill is uniform for different samples from the un-250

derlying distribution, so it generalizes well to new inputs it has not seen before.251

A large bias is associated with under-fitting, where the method lacks enough train-252

ing data and/or expressivity to capture the relationships, while a large variance is as-253

sociated with over-fitting, where the ML scheme uses “noise” (unimportant features) in254

the training data to reduce the bias. This is a case of having too much expressivity rel-255

ative to the amount of data. The expressivity of a ML scheme is related to its complex-256

ity (roughly, the flexibility it has to identify relationships between inputs and outputs,257
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which is a function of both the method and the number of free parameters it is given).258

For our application, we are given some ML scheme of fixed complexity (i.e., WaveNet).259

We must ensure there is still enough training data in the center of the distribution to260

avoid under-fitting it, and not too much emphasis on the tails to cause over-fitting.261

Learning from unbalanced datasets is challenging. For example, consider a dataset262

where 99% of the dataset is class A and the remaining 1% is class B. A binary classi-263

fier that always predicts class A can still be considered very good under a seemingly in-264

nocent metric such as average accuracy, defined as265

average accuracy ≡ #correctly labeled samples

#of total samples
,266

with a value of 0.99, although it completely fails to learn the characteristics of class B.267

Methods to remedy difficulties attributed to imbalanced datasets for classification are268

far and plenty (He & Garcia, 2009; Johnson & Khoshgoftaar, 2019), and are used in a269

variety of applications including object detection (Oksuz et al., 2021).270

These methods can be broadly categorized into data-level, algorithm-level, and the271

hybrid of those two. Data-level methods manipulate the distribution of the training data272

distribution: such as undersampling from the majority class and oversampling from the273

minority class (Chawla et al., 2004), or generating synthetic samples of the minority class274

(Chawla et al., 2002) through randomly weighted linear combinations of samples. Algorithm-275

level methods adjust the learning algorithm to increase/decrease the impact of samples276

from minority/majority class. The latter case falls under cost-sensitive learning as it is277

implemented by imbuing a cost or penalty term in the learning process (Krawczyk, 2016;278

Elkan, 2001).279

Rare event sampling is another technique related to treating data imbalance that280

has been applied to geoscience datasets. For example, Webber et al. (2019) uses histogram-281

based data rebalancing techniques in quantile diffusion Monte-carlo, a rare-event sam-282

pling technique, to generate samples of extreme storms. However we are not aware of283

efforts that successfully use samples generated by rare-event sampling for inference, and284

therefore leave it out of the discussion below.285

Although many methods for treating data imbalance are established for classifi-286

cation, extending them for regression is nontrivial. There have been some efforts on this287

front as done by Torgo et al. (2015); Ding et al. (2019); and Rudy and Sapsis (2023). Torgo288

et al. (2015) extends the Synthetic Minority Oversampling TEchnique (SMOTE; (Chawla289

et al., 2002)) to regression by assuming near linearity of the model being learned, Rudy290

and Sapsis (2023) extends relative entropy based loss functions from scalar outputs to291

low dimensional vector outputs, and Ding et al. (2019) proposes a new loss function and292

a model design that memorizes extreme events for time series applications. Some short-293

comings of these solutions are that they are incompatible with nonlinear problems and294

difficult to implement in applications with high dimensional datasets.295

We prepare two methods to address data imbalance in regression tasks. Both meth-296

ods require first identifying a metric along which the high-dimensional dataset yields a297

long-tailed distribution; in our case, the wind range. We project our high-dimensional298

dataset to the low-dimensional space identified by the metric. Section 3.1 shows how his-299

togram equalization can be applied to transform unbalanced distribution to one more300

uniform. This idea is closely related to transportation theory (optimal transport), which301

is the study of allocation of resources with a constraint of cost appended to the trans-302

portation of those resources. Since we merely intend to modify the data distribution en-303

countered by the training algorithm, rather than to transform the data itself, we drop304

the transportation cost constraint. In Section 3.2, we describe the data rebalance method,305

which extends the ideas of over/undersampling methods to treating data imbalance for306

regression tasks by applying linear transformations to the probability distribution func-307

tion (PDF) of the dataset. Finally, we describe mean bias removal in Section 3.3.308
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3.1 Histogram equalization309

Histogram equalization is an image processing method that adjusts the contrast310

of an image by changing the shape of the histogram of the intensity values, and is the311

simplest optimal transport method for 1D data. The extent to which the shape of the312

histogram is modified is parameterized by t ∈ [0, 1] where t = 0 yields the original his-313

togram, and t = 1 a target histogram. By equalization, we aim for a target distribu-314

tion that is uniform, with an equal number of pixels in each intensity bin.315

Figure 3 shows an example of this applied to a grayscale image where each sam-316

ple has a value in [0, 1] which represents a greyscale value between black and white. The317

original histogram (t = 0) has the majority of pixels in the moderate intensity region,318

and very few pixels are close to minimum and maximum intensities. As the parameter319

t increases to 1, the distribution is flattened in the peak region and elevated in the ex-320

treme regions. Lighter pixels are made lighter and darker pixels are made darker, qual-321

itatively yielding images with greater contrast as t increases.322

Figure 3. An example of histogram equalization performed for image processing with t

ranging from 0 to 1. The original image corresponds to t=0. As t increases, moderate satura-

tion pixels are pushed towards their nearest extremes. At t=1, the pixels are distributed almost

uniformly.

Let us describe this procedure in more detail. Let xi denote the intensity of the323

ith pixel of an m×m image, and let permutation σ be defined such that {xσ(j)}m
2

j=1 are324

sorted in increasing order,325

xσ(1) ≤ . . . ≤ xσ(m2).326

Assign {yj}m
2

j=1 to the cumulative distribution function (CDF) of the target distribution.327

This corresponds to m2 equispaced, ordered nodes from 0 to 1 since the target is the uni-328

form distribution for histogram equalization:329

yj = (j − 1)/(m2 − 1), j = 1, · · · ,m2.330

In general, the CDF of any desired target distribution suffices as the values of yj ’s. Then,331

the new intensity value for the ith node is given by332

zi := (1− t)xi + tyσ−1(i). (2)333

Here is a numerical example of applying this to a 2 × 2 image. The original im-334

age is given by pixels335 [
x1 x2

x3 x4

]
=

[
0.60 0.52
0.25 0.44

]
.336
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The sorting permutation is σ = [3, 4, 2, 1] for a row-wise uncoiling of the matrix, and337

the target values are y1 = 0, y2 = 1/3, y3 = 2/3, y4 = 1. Thus, the transformation338

yields339 [
yσ−1(1)=4 yσ−1(2)=3

yσ−1(3)=1 yσ−1(4)=2

]
=

[
1 2/3
0 1/3

]
340

for t = 1, and the general formula for any t ∈ [0, 1] is given by341

(1− t)

[
x1 x2

x3 x4

]
+ t

[
y4 y3
y1 y2

]
= (1− t)

[
0.60 0.52
0.25 0.44

]
+ t

[
1 2/3
0 1/3

]
.342

3.2 Data Rebalancing343

Our goal is to change the distribution of the training dataset while taking full use344

of the available data and without generating synthetic data. Histogram equalization for345

image processing achieves the reshaping of the dataset distribution by transforming the346

values of the sample from xi to zi as shown in Eq. (2). Doing so may move a sample from347

one histogram bin to another, thereby changing the histogram directly. Our method uses348

the linear mapping from the original to the new intensity values described in Eq. (2), but349

apply the mapping to the PDF instead. The newly assigned probability may increase350

or decrease a sample’s contribution to the training process. We describe the method in351

detail below, and propose two implementations of the method in Sections 3.2.1 and 3.2.2,352

respectively.353

Let H(0) be the histogram of the training dataset Xtraining with N bins,354

{[b0, b1), . . . , [bN−1, bN ]}.355

The count of samples in the nth bin, [bn−1, bn) is h
(0)
n , and the ideal count of the sam-356

ples in the nth bin in the ideal histogram is h
(1)
n . Here, the ideal histogram is uniform357

with N equal width bins, so h
(f)
n = M/N for all n = 1, · · · , N for a dataset with M358

samples. The new count of the nth bin for parameter t is then:359

h(t)
n = (1− t)h(0)

n + th(1)
n . (3)360

Since the nth bin originally represented h
(0)
n /M of the training set and now we want it361

to represent h
(t)
n /M of the training set, the ratio between the two determines the resam-362

pling rate in the nth bin.363

α(t)
n :=

{
h
(t)
n /h

(0)
n = (1− t) + th

(f)
n /h

(0)
n , h

(0)
n > 0

0 , h
(0)
n = 0

(4)364

These ratios determine the new sampling rates for the training data. We found in prac-365

tice that fairly low t-values still yielded very large α ratios at bins belonging to the ex-366

treme tail of the distribution. To avoid unreasonable resampling rates being assigned to367

rare data points, we bound the ratios by the maximum repeat parameter as shown in368

Eq. (5),369

α̃(t)
n :=

{
min{α(t)

n , max repeat} , h
(0)
n > 0

0 , h
(0)
n = 0.

(5)370

Thus, the final resampling rate, α̃t
n, is determined by three decisions: 1) choice of371

histogram bins; 2) t, the linear mapping parameter; and 3) the maximum repeat param-372

eter. The resampling strategy is no longer a simple bilinear interpolation between the373

original (h(0)) and desired (h(1)) histograms due the maximum value of the resampling374

rate. The counts for the bins of the new, resampled histogram for some t ∈ [0, 1] and375

max repeat is,376

h̃(t)
n = α̃(t)

n h(0)
n . (6)377
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Figure 4. Each of the panels correspond to t values ranging from 0.05 to 0.60. The 3 lines

for each panel represent the impact of maxrepeat parameter values 10, 100, and 500. The original

histogram is shown filled in as a basis for comparison.

The process is easier to visualize than spell out: Figure 4 shows the original his-378

togram, h(0), plotted in foreground with the new histograms, h̃(t), with increasing val-379

ues of t for each panel, as well as three different values for max repeat in each panel. The380

impact of max repeat is seen most clearly in the bottom three panels. The zonal wind381

range at which the lower values of max repeat diverge from the highest value is depen-382

dent on t as expected.383

The number of histogram bins was kept constant here. It governs how finely one384

resolves the distribution. One could also allow the width of the bins to vary, say to more385

finely capture the center vs. the tails. Coarser bins, on the other hand, allows one to in-386

crease the value of t without oversampling the tail as extremely. This approach was taken387

by Sun et al. (2023), who effectively implemented our method with t = 1, but with only388

20 bins.389

3.2.1 Implementation I: Direct sampling390

State-of-the-art optimization methods for deep neural networks rely on incremen-391

tal, iterative updates of the model weights. They are incremental in that each update392

is based only a subset of the training dataset called a batch, and iterative in that the train-393

ing dataset is passed through the optimization method many times before the model weights394

converge to an acceptably optimal state. An epoch is a measure of unit for the progress395

of the training of a model defined by a single pass over the training dataset, for which396

each sample in the training dataset processed exactly once. Since our strategy changes397

the contribution of each sample to the training algorithm based on where in the data dis-398

tribution the sample belongs, some samples will be seen more often than others. There-399

fore, we modify the definition of an epoch to mean a single-pass over a resampled sub-400
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set of the dataset. We outline the procedure for resampling in context of a general NN401

training algorithm, which is written as a pseudoalgorithm (Algorithm 1) in Appendix402

A.403

First, compute resampling rates α̃
(t)
n for each bin using Eq. (5). Next, for each bin404

labelled by n = 1, · · · , N , resample and collect the indices of the chosen samples. If α̃
(t)
n <405

1, then it is straightforward to sample from the nth bin with probability α̃
(t)
n by randomly406

choosing a subset of the bin of size h̃
(t)
n without replacement. Another method is to sam-407

ple from the uniform distribution h
(0)
n times and keep the indices that correspond to sam-408

pled values less than α̃
(t)
n . For both methods, the selected indices are recorded. On the409

other hand, if α̃
(t)
n > 1, then include every sample from this bin floor(α̃

(t)
n ) times, and410

then sample with probability α̃
(t)
n − floor(α̃

(t)
n ). Following good practice, the collected411

indices from all N bins should be combined, shuffled, and separated into batches. These412

batches should then be fed to the training algorithm, which will update the NN model413

weights once for each batch.414

Once all of the batches are processed and if further training is needed, repeat the415

resampling step to select another realization of the new data distribution. Note that that416

every iteration of resampling is done without replacement, but samples may be repeated417

from one iteration to the next. It is straightforward to include an additional step to re-418

sample at the next iteration without replacement by keeping track of which samples and419

how many times those had been picked in previous iterations. When sampling without420

replacement is implemented across epochs, all of the samples to be seen by the training421

algorithm at least once after ceiling

((
minn α̃

(t)
n

)−1
)

epochs. We include a pseudoal-422

gorithm for the resampling method in Algorithm 2 in Appendix A.423

3.2.2 Implementation II: Weighted Loss Function424

An alternative implementation of our approach is to modify the loss function to425

account for disparity in the distribution. Success in training deep NNs are attributed to426

efficient back-propagation, a method of updating model weights with the goal of min-427

imizing a loss computed from a batch of samples. Since loss functions are typically de-428

fined for a single pair of the target and the predicted value, the loss over a batch of sam-429

ples is an average of the loss function values for each of the samples in that batch. This430

implies that every sample in the batch has equal importance in updating the model weights.431

Our resampling strategy aims to modify the data distribution to lend importance to some432

samples and reduce impact from other samples. We propose using a weighted average433

in the accumulation of loss function values of a batch, where the weight for each sam-434

ple corresponds to the resampling rate of the bin the sample belongs to. For a sample435

indexed by i that belongs to bin n, the weight is determined by parameters t and max -436

repeat via Eq. (5): wi ≡ α̃
(t)
n . The weights can be computed for the entire training dataset437

prior to any training and passed to the training loop to compute a weighted average of438

the loss function for each batch, as shown in Section 3.2.2.439

Lossavg({yi}batch size
i=1 , {ŷi}batch size

i=1 ) = 1
batch size

∑batch size
i=1 Loss(yi, ŷi) (7)440

Lossweighted avg({yi}batch size
i=1 , {ŷi}batch size

i=1 ) = 1
batch size

∑batch size
i=1 wiLoss(yi, ŷi). (8)441

3.2.3 Maximum repeat: Fail-safe against overfitting442

The maximum repeat parameter, Eq. (5), puts a threshold on the oversampling rate443

to prevent overfitting. This allows us to fine tune treatment of the data imbalance by444

relaxing the computed resampling rates of bins with high α ratios, which typically oc-445

cur at the the extreme tail of the distribution.446
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3.3 Bias removal447

In addition to the resampling method, we propose a correction method to be em-448

ployed at time of inference to further enhance the quality of the ML model. This method449

applies a first-order correction to remedy the bias of a trained model, where the bias is450

computed along the metric used to identify the data imbalance. There are a couple of451

ways to compute the bias. Consider a dataset of M samples that were binned into N452

bins where Bn is the set of indices of samples that belong to the nth bin. The output453

variable has dimension d, and we denote the target and predicted variable of the ith sam-454

ple by455

y⃗i =

yi,1...
yi,k

 , ⃗̂yi =

ŷi,1...
ŷi,k

456

where ·̂ is used to denote the ML predictions. The mean error profile for the entire dataset457

can be computed by458

mean error profile = M−1
M∑
i=1

y⃗i − ˆ⃗yi.459

For a well trained scheme, the mean error profile should be close to a vector of zeros. Sim-460

ilarly, we can compute the mean error profile for each bin,461

mean error profile for bin n =

{
|Bn|−1

∑
i∈Bn

y⃗i − ⃗̂yi

}N

n=1

. (9)462

Large errors in bins of the tails can be balanced by smaller errors in the fat tail of the463

distribution. At inference, we simply determine the bin the sample belongs to and sub-464

tract the appropriate mean bias profile.465

4 Case study: Data-driven GWP emulation466

Section 4.1 describes two model architectures we use to test our method: WaveNet467

from Espinosa et al. (2022) and a convolutional NN encoder-dense-decoder (EDD). Both468

implementations of the data rebalancing, with varying t parameters, are applied during469

training on the same MiMA dataset. Offline results are presented in Section 4.2, and the470

emulators with the best offline results are tested online in Section 4.3. Online refers to471

replacing AD99 within MiMA integrations with our trained ML emulators.472

4.1 Model Architectures473

We include a short summary of WaveNet here, and refer readers to Espinosa et al.474

(2022) for a full description. WaveNet takes in a concatenation of all of the input vari-475

ables and applies several dense layers that split into pressure level-specific “branches”.476

The branches themselves are also dense layers that output GWD values for a specific pres-477

sure level of the MiMA vertical grid, and do not communicate with one another.478

The EDD architecture uses 1D convolutional layers in the encoder and decoder sec-479

tions and dense layers in the middle section. This structure is imposed to encourage the480

model to learn local interactions in the encoder section via convolutions while downsam-481

pling layers compress the outputs. This combination of convolutional layers followed by482

downsampling is commonly used in autoencoders, which can serve as a nonlinear dimen-483

sion reduction technique that extract essential information. The middle dense section484

allows the processing of global relations and the decoder section reassembles the verti-485

cal profile of the zonal gravity wave drag with transposed convolutions and upsampling.486

Additional details are included in Appendix B.487
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Table 1. Number of trainable parameters in section of each model architecture. The EDD

is comprised of 3 sections: encoder, dense, decoder; WaveNet is comprised of 2 sections: shared

layers and 33 branches for the top 33 pressure levels.

Model Type/Size Convolutional Layers Dense Layers # Layers per section

Small EDD 26,237 328,800 3/3
Large EDD 50,337 650,800 3/3

Model Type/Size Shared Layers Branched Layers # Layers per section

Small WaveNet 10,368 342,177 1/3
Large WaveNet 14,904 704,385 1/3

The hyperparameters for these architectures, listed in Table 1, include the num-488

ber and width of the dense layers, the number of (transposed) convolution layers and the489

size and number of filters for each of these (transposed) convolution layers. Some degrees490

of freedom were removed by restricting the encoder and decoder halves to be as sym-491

metric as possible, while accounting for the fact that the encoder receives multiple chan-492

nels and the decoder outputs a single channel. For the remaining degrees of freedom, we493

used RayTune (see Liaw et al. (2018)) to thoroughly tune the hyperparameters. We con-494

trast two sizes for each architecture: a smaller network of approximately 350,000 pa-495

rameters; and a larger network of approximately 700,000 parameters. Espinosa et al.496

(2022) found that large networks yielded better offline skill than their smaller counter-497

parts, but at the expense of additional computational costs.498

The performance of both WaveNet and the EDD models was extensively optimized499

before we applied the resampling strategies: the goal of this paper is to use data imbal-500

ance strategies to improve an already peak performing scheme. This included the con-501

sideration of different loss functions during training and regularization to avoid overfit-502

ting. The schemes were regularized by applying both L1 and L2 regularization to encour-503

age sparsity as well as weight decay. The L1 and L2 regularization coefficients were tuned504

during our initial hyperparameter tuning step using RayTune (Liaw et al., 2018). We505

observed significant gaps in performance between training and validation test sets with506

too little regularization. With too much regularization, however, overall performance be-507

gan to suffer in both the training and validation sets such that most predictions were508

being damped to predicting zero profiles. RayTune enabled us to do a systematic search509

for optimal regularization parameters in a simple and efficient way.510

The absolute norm error of a p-length profile is proportional to the root mean squared511

error (RMSE),512

AE(y, ŷ) = ∥y − ŷ∥2 =

 p∑
j=1

(y[j]− ŷ[j])2

1/2

=
√
p RMSE(y, ŷ),513

and was shown, for instance in Fig. 2. To better assess the skill of the data-driven pa-514

rameterizations, we normalize the absolute error by the RMS amplitude of the target515

gravity wave drag predictions. For a set of N target profiles {yi}Ni=1 and their correspond-516

ing prediction profiles {ŷi}Ni=1, the relative is computed as517

RE({yi}i, {ŷi}i) =
∑

i AE(yi, ŷi)∑
i ∥yi∥2

.518

A relative norm error of 1 (100% error) would imply that the average magnitude of the519

error is as large as the average magnitude of the target profiles: a scheme predicting zero520
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drag for all profiles in this wind range bin would satisfy this condition. Furthermore, the521

RE ensures that the trend of the error norms over the wind range is not simply propor-522

tional to the trend of the target vector norms.

Figure 5. Baseline (t=0) absolute and relative error norms of two sizes of WaveNet and

EDD are shown. The errors are shown as a function of wind range in the validation set, as in

Figure 2, which showed results only from the large large WaveNet model.

523

Figure 5 shows the absolute and relative errors of the four models with no resam-524

pling strategy, establishing a baseline for comparison with our resampling strategies. We525

have omitted analysis of the bins where the zonal wind range is less than 5 m/s or greater526

than 200 m/s, corresponding to 0.0085 and 0.00055% of the dataset, respectively. With527

so few data points, the errors in these bins are noisy and dominated by sampling error.528

We show the relative error on the right panel to highlight how all four variants learn the529

peak portion of the distribution best, but struggle with both tails.530

We emphasize that relative errors are normalized separately for each bin of the zonal531

wind range. While the absolute errors are small for low wind range cases, the target grav-532

ity wave tendencies are also small, so that the scheme is not doing so well relative to a533

straightforward climatological prediction, particularly with the WaveNet models. A key534

region in need of improvement, however, is where wind range is greater than 175 m/s.535

Here both the absolute and relative errors in all 4 schemes are large.536

We observe that the EDD models outperform the WaveNet models, and this dis-537

parity in errors between the model architectures is more significant than between net-538

work sizes. The relative error is below 30% for a wind range of approximately 45 to 175539

m/s for two WaveNet models, and for a larger range for EDD, 25-175 m/s. Despite hav-540

ing approximately the same number of learnable parameters as their EDD counterparts,541

the WaveNet models have not acquired as much skill given identical training conditions;542
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the number of learnable parameters is not all in all when it comes to model complex-543

ity.544

4.2 Data Resampling and Offline Results545

Of the three tunable parameters of the resampling strategy, we study the impact546

of tuning t. The maximum repeat parameter and resolution of the histogram were set547

at 100 maximum repeats and 100 equal-width bins after an initial survey. We investi-548

gated values of t = 0.05, 0.10, 0.15, 0.20, 0.40, 0.60 following intuition that t closer to549

1 is likely more damaging than helpful given the shape of the distribution of our dataset.550

Figure 4 shows the new shape of the data distribution of the 6 configurations on the teal551

(medium-width) lines with the original distribution shaded in green in the background.552

Figures 6 to 9 show the baseline error (t = 0, shown in Fig. 5) in black lines, and553

the deviation of the error relative to this baseline for t > 0 in colors ranging from brown554

to yellow. In all instances we see very little, if any, loss of accuracy in the peak region555

(a wind range of roughly 10 to 100 m/s). We have achieved one criterion for success: re-556

sampling, either directly or through a weighted loss function, does not damage perfor-557

mance for typical inputs. Now the harder part: does resampling improve performance558

in the tail, from 100 to 200 m/s in our wind metric? Here we found success in most cases,559

though not uniformly. We acknowledge the failure first. In our best baseline network,560

the large EDD, direct oversampling led to overfitting. In all other cases, however, we were561

able to successfully reduce error in the tail.562

4.2.1 Overfitting vs Underfitting563

As we feared, the resampling strategy can encourage overfitting of the tail in a data564

driven scheme with sufficient complexity. Figure 6 shows the result of training the large565

EDD model. The left panel shows the direct sampling implementation (Algorithm 2).566

For the direct sampling implementation, samples with wind range greater than 125 m/s567

in the training set suggest impressive gains when compared to the baseline error, albeit568

with no clear correlation with the t parameter. This improvement, however, fails to gen-569

eralize to samples unseen during training: the mean absolute error of the validation set570

is larger than that of the baseline error. We observe that larger t corresponds to larger571

growth in error, suggesting that the trained models suffer from overfitting triggered by572

the inflation of samples in the moderate tail region.573

Typically, overfitting is diagnosed during training when validation error stops im-574

proving (or even start to get worse) while training error further improves. We avoided575

overfitting for the baseline WaveNet and EDD by applying L1 and L2 regularizations dur-576

ing training. While we only show the errors at the end of training, it is clear from the577

design of this experiment that the resampling strategy resulted in models that learned578

the noise at the tail rather than learning an intrinsic principle tied to the tail. A poten-579

tial cause for overfitting is larger model complexity (number of trainable parameters) rel-580

ative to the complexity of the pattern being learned, which then leads to the model learn-581

ing noise associated with the specific instance of the training set. We suspect that over-582

sampling of the tail combined with the large network size created a learning environment583

in which the EDD had the capacity to learn noise in the tail. It might be possible to mit-584

igate this overfitting by increasing the regularization of the EDD. When training with-585

out resampling, however, we found that increased regularization was starting to reduce586

overall performance.587

The right panel of Fig. 6 shows the experiment results with the weighted loss im-588

plementation (Algorithm 3). Unlike the direct sampling implementation, we observe about589

the same magnitude of improvement in the tail for the training set and the validation590

set. The upper-middle range t-values (0.15, 0.20, 0.40) exhibit no improvements from591
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Figure 6. This figure shows the results of applying data rebalancing to the large EDD

model architecture with the direct sampling method (left column) and the loss function sampling

method (right column). The plotted error fuction, ϵt(n), is the difference in the relative norm er-

ror of a model trained with a positive t-value to the model trained without any data rebalancing

(t=0) in the nth bin. The colors brighten as t increases, and the reference baseline error is shown

in Fig. 5. The top and middle rows show the error differences on the training and validation sets,

and the bottom row shows the histogram of the dataset with respect to the zonal wind range

between 5 and 200 m/s.

the baseline in the validation set, but the extreme t-values (0.05, 0.10, 0.60) all show slight592

improvements. Since the only difference between the left and the right panels is in the593

implementation details of the resampling strategy, this suggests that the weighted loss594

function implementation may be less amenable to overfitting than the direct sampling595

method. We further analyze the comparison between the two implementation methods596

in Section 4.2.2.597

Next, we repeat the experiment in the previous section for the large WaveNet ar-598

chitecture, which has a comparable number of tunable parameters for both implemen-599

tation methods, and show the result in Fig. 7. We observe that the validation set errors600

at the tail are smaller than the baseline error for most t values, and there is no signif-601

icant change to the errors at the peak. Unlike the example in Fig. 6, these large networks602

did not overfit to the samples at the tail of the training set relative to the baseline er-603

ror. If network size is a potential cause for overfitting in the direct sampling large EDD604

case, why do we not see similar results in the large WaveNet cases? We speculate that605

the baseline WaveNet model was underfitting and there was more room for improvement606

to be garnered from applying the resampling strategy. If the baseline EDD model was607

not underfitting, then the resampling strategy could not reduce the approximation er-608

ror (bias) much more than was already achieved by the baseline model, and all there was609

left to learn were noisy traits unique to the training set.610

With the exception of the overfitting case, the resampling strategy successfully re-611

duces underfitting at the tail without penalty in the peak, thereby reducing the bias over-612
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Figure 7. Both columns show errors in the same fashion as Fig. 6. Left column shows errors

for the large WaveNet instances with direct sampling implementation, and right column shows

errors for the large WaveNet instances with weighted loss function sampling implementation.

all. In the next section, we show further evidence of success of the resampling strategy613

and compare the two implementation methods.614

4.2.2 Sampling strategy comparison: weighted sampling vs weighted loss615

We now compare the two implementations (Algs. 2 and 3) on the small EDD mod-616

els. Figure 8 shows the baseline errors and the deviations from the baseline errors as we617

vary t over the training and the validation sets. Figure 8 reveals improvements in the618

tail, albeit modest, with little to no loss in accuracy in the peak. The notable exceptions619

occur at t = 0.20 and t = 0.40 for the weighted loss implementation, where there are620

almost no change if not a decline in performance on the tail. These occur in both the621

training and validation set, however, and therefore are not likely an issue of overfitting.622

Outside of those exceptions, improvements occur for a wider range of the distribution,623

with larger magnitudes of improvement in the training set than in the validation set as624

expected. The weighted loss experiment (right plots of Fig. 8) shows a slightly larger dis-625

parity between the training and validation set errors than the direct sampling experi-626

ment; the training set errors show larger improvements with the weighted loss implemen-627

tation than direct sampling, but the validation errors are comparable between the two628

implementations. With direct sampling, all t values except for t = 0.60 still yield im-629

provement in error in the moderate tail region.630

Next, we discuss the experiment results for the small WaveNet model. As shown631

in Fig. 9, the difference between direct sampling and weighted loss are less pronounced632

than in the EDD model. Also, the errors of the training set and the validation set are633

much closer than in the experiments for the small EDD models. The largest difference634

between the implementation methods for the small WaveNet models is in which t val-635

ues are the most optimal. The direct sampling method is optimized for the smallest and636

largest t values, whereas the weighted loss method prefers moderate t values (t ≈ 0.15).637
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Figure 8. Both columns show errors in the same fashion as Fig. 6. Left column shows errors

for the small EDD instances with direct sampling implementation, and right column shows errors

for the small EDD instances with weighted loss function sampling implementation.

Even though we saw that the loss function sampling avoided overfitting for the large638

EDD experiment, we do not see a similar advantage of the loss function implementation639

over the direct sampling implementation in the small EDD, small WaveNet, and large640

WaveNet experiments. However, we do see modest improvements in the tail for mod-641

els trained with the resampling strategy for the majority of t values for those three ex-642

periments, although there is no clear trend of which t values are optimal. Future exper-643

iments that may reveal tighter trends, include studying the sensitivity of learning algo-644

rithm, and increasing the density of t values.645

4.3 Bias Removal and Online Results646

We conclude our case study with a brief discussion of how our modified data-driven647

parameterizations perform when coupled “online” with the MiMA atmospheric model.648

An important evaluation of a new parameterization scheme is conducted by computing649

statistics from long-time integrations where the scheme is coupled with the model, as op-650

posed to the “offline” metrics we showed in the previous section. Online coupling is a651

more challenging task, as errors in the GWP can lead to biases in the large scale flow,652

forcing the scheme to make inferences in regimes it has not yet seen, which often leads653

to instability (Brenowitz et al., 2020).654

To test a selection of our trained ML emulators, we follow Espinosa et al. (2022),655

coupling them with MiMA for 40-year integrations after 20 years of model spin-up. The656

simulations with the data-driven emulators can then be compared against the control657

integration with the “true” gravity wave forcing provided by the AD99 physics based pa-658

rameterization. Coupling also allowed us to implement the bias correction, which can659

be implemented independently or in addition to the rebalancing strategies. To summa-660

rize quickly, the new data driven parameterizations successfully couple with the model,661

producing climatological statistics (mean and variability) that were consistent with the662

original model. Differences between the model with the baseline schemes and our re-balanced663
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Figure 9. Both columns show errors in the same fashion as Figs. 6 to 8. Left column shows

errors for the small WaveNet instances with direct sampling implementation, and right column

shows errors for the small WaveNet instances with weighted loss function sampling implementa-

tion.

versions, however were not statistically significant. It is likely that a longer integration664

could eventually reveal significant differences, but an improvement that requires a cen-665

tury or more to observe is of modest utility. We conclude that while re-balancing the data666

did improve performance based on the wind metric, this bias was either not critical to667

performance of the parameterization in the model, or we have not sufficiently improved668

the tails to see a significant effect.669

For completeness, we show a few results here, focusing on the coupled model’s abil-670

ity to generate the Quasi-Biennial Oscillation (QBO), a vacillation of easterly and west-671

erly jets in the tropical stratosphere over a period of approximately 28 months. We high-672

light this metric because the QBO is in large part driven by gravity wave momentum673

transport. This emergent behavior on a time scale of years, generated from gravity waves674

that operate on time scales of hours, is viewed as critical test of gravity wave parame-675

terizations (Richter et al., 2022; Anstey et al., 2022; Bushell et al., 2022). An important676

difference between the online runs in this manuscript and that of (Espinosa et al., 2022)677

is in the model parameters of MiMA that generated the training data. We employed pa-678

rameters that were optimized for simulation of the Northern hemisphere (Garfinkel et679

al., 2020), not the QBO. Thus the oscillation is the control integration had a period of680

approximately 35 months, not 28 months, as shown in Figure 10. Capturing the right681

period of the QBO is generally achieved by tuning the GWP, as was done in Garfinkel682

et al. (2022).683

We show results with the smaller EDD models, as the rebalancing strategies ex-684

hibited the largest offline improvement. Table 2 lists the QBO period for the baseline685

model (t = 0) and the various combination of resampling strategy and bias removal.686

The QBO period was computed using the Transition Time (TT) method of Richter et687

al. (2020). First, the zonal wind was averaged zonally in the tropical region (latitudes688

between 5◦S and 5◦N), as shown in Figure 10. Then the intervals between QBO phase689
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Table 2.

Emulator Description Transition Time

control 35.0± 2.5
small EDD, t = 0 38.4± 6.6
small EDD, t = 0, bias removed 37.0± 7.7
small EDD, t = 0.05, direct sampling 37.0± 3.0
small EDD, t = 0.05, direct sampling, bias removed 38.1± 3.7
small EDD, t = 0.05, weighted loss 39.7± 9.0
small EDD, t = 0.05, weighted loss, bias removed 36.4± 5.5

changes are defined as times when the signs of zonal mean zonal wind reversal near 10690

hPa (denoted by the plus signs). The resulting mean and the standard error of those val-691

ues give us a proxy for a confidence interval of the QBO period. A robust implementa-692

tion of the TT method requires smoothing the field with 15 to 30 day windows, to avoid693

double counting small deviations around transitions.694

The baseline model exhibited a slightly longer QBO period of 38 months, though695

40 years of simulation was insufficient to establish whether this bias is statistically sig-696

nificant. We found that all of our modified data-driven approaches exhibited shorter QBO697

periods, an improvement relative to the baseline, but still biased long relative to the con-698

trol. The best performing model is highlighted in Figure 10, but as quantified in Table 2,699

these integrations are not long enough to establish whether these differences are statis-700

tically significant. As noted above, this could be due to the fact that the QBO bias is701

unrelated to errors in the rare cases highlighted by the wind metric, or that our correc-702

tion is insufficiently large to make a dent. It highlights the importance of domain knowl-703

edge to identify the key quantity or quantities of data imbalance that matter for the prob-704

lem of interest.705

Figure 10. Both plots show the zonal mean zonal wind averaged over years 20-40 in lat-

itudes between 5◦S and 5◦N. The crosses indicate the times where QBO phase changes are

detected by the TT method. Left: Control run with AD99; Right: Best emulator (small EDD

with resampling strategy via weighted loss and t = 0.05 and bias removal).
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5 Conclusions and Future Directions706

With the growing prevalence data-driven methods being used for various tasks in707

modeling earth system models, it is crucial to properly learn from geoscience datasets.708

We address what one can do to improve a data-driven parameterization given that there709

is no additional data to learn from, nor computational capacity to allow for a larger, more710

complex model. In other words, this is the typical scenario for modeling various subgrid-711

scale mechanisms in climate models. In particular, we proposed two strategies to com-712

bat data imbalance with the goal of improving data-driven models, and applied it to a713

case study of improving a data-driven GWP model.714

Both methods rely on first identifying a metric or a projection that yields reveal715

an imbalance in the available dataset that has an inherent significance to the physical716

process being modelled. This process is unique to each application and requires expert717

scientific knowledge of the modelled process, and doubles as a dimension reduction step718

that allows the practitioners to view the original high-dimensional dataset in a new con-719

text. Ideally, this new context should illuminate the differences between frequent (and720

therefore easy to model) instances from rare (and difficult to model) instances. Despite721

resulting from the same physical mechanisms, these two types of instances occupy al-722

most two distinct regimes due to the natural variability in the model system. A neces-723

sary complicating factor is that these two classes are not sharply partitioned like dis-724

crete distributions, but rather can be viewed as the peak and the tail of a continuous dis-725

tribution. In our case study, we chose wind range of a model column as the appropri-726

ate metric for our physical process, gravity waves. This choice stemmed from the obser-727

vation that wind range can crudlely approximate shear, an important quantity in deter-728

mining the level at which GWs break.729

Data rebalancing can be achieved in two ways. In the first method, we use the dis-730

tribution of the dataset along the identified metric to systematically undersample from731

the peak and oversample from the tail. Our motivation to undersample from the peak732

is from the intuition that these samples are over-represented relative to the variability733

they cover within the dataset, resulting in trained models that may overfit to this region.734

On the other hand, oversampling the tail is justified by the exact inverse logic: these rare735

samples are undervalued in their influence over training models. In the second method,736

the sampling is left unchanged, but the loss function is weighted by the same ratio to737

increase the penalty on the under-represented class and reduce it for over-represented738

class. Both data rebalancing strategies generate a new distribution/weighting function739

on the training dataset with a linear interpolation of the original distribution to a de-740

sired distribution (i.e., uniform distribution) parameterized by t ∈ [0, 1], much like his-741

togram equalization. We add in an additional parameter to prevent too much oversam-742

pling/weighting in the tail, by the name of maximum repeat. The implementation of these743

methods requires discretizing the continuous distribution into discrete bins; the choice744

of the histogram is also an important choice. The methods are implemented by either745

providing to the learning algorithm a subsample of the dataset that realizes the new dis-746

tribution, or using the new weights in the loss function such that the new distribution747

is implicitly represented.748

In our case study, we found that data rebalancing successfully reduces the errors749

in the moderate tail region while maintaining approximately the same error levels in the750

peak under most scenarios. In the exception case, data resampling increased the gen-751

eralization error in the tail, which we attribute to the large size of the ML model. Too752

large of a model complexity can cause a model to learn noise rather than pattern in the753

dataset, a phenomenon exacerbated by oversampling in the tail. Unfortunately, we do754

not observe a clear advantage of the direct sampling implementation over the weighted755

loss implementation, nor an unambiguous indication of how to choose the method pa-756

rameters. Further studies are needed to address these issues on well-understood datasets:757
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the dataset used for our case study is likely not the best tool for developing intuition for758

this method.759

Mean bias removal, an additional approach to fix errors with data imbalance, cor-760

rects the extant bias in a fully trained data-driven model as a function of the data imbalance-761

revealing metric This is a first-order correction as it assumes that the mean bias profile762

of the trained model evolves meaningfully across this metric. The main source of error763

for this method is generalization error as the mean bias profiles of the training set may764

not be representative of the instances available at time of inference.765

In conclusion, data rebalancing and bias removal show modest improvements in pro-766

ducing data-driven models less inclined to mirror the imbalance apparent in the dataset.767

The lack of overwhelming evidence of the success of these methods can be attributed to768

several factors. First, our research did not investigate how to choose the projection used769

to identify data imbalance, a crucial component to both data rebalancing and mean bias770

removal. Thus, it may be that the wind range metric is not the most ideal projection771

for the dataset used in our case study, or that any 1D projection is too simple to cap-772

ture the data imbalance for this dataset. Second, our assumptions on how the data im-773

balance impacts the training of the data-driven models may be overly simplistic, espe-774

cially in its treatment of the tail. We view samples from the tail as in need of a greater775

significance in training the ML model. However, a more pressing issue at the tail may776

be that the dataset available to us does not cover the variability inherent to that region.777

If so, any oversampling does not increase coverage in this region but instead lead to over-778

fitting. We attempt to curb this by introducing the maximum repeat parameter, but this779

introduces another parameter to be tuned in the rebalancing method. Scarcity of rare780

(and extreme) phenomena in datasets is a common challenge in geoscience datasets that781

may be alleviated by rare event sampling, but this is beyond the scope of the methods782

presented in this paper.783

6 Open Research784

6.1 Data Availability785

All neural networks used in this manuscript were (re-)written in PyTorch (Paszke786

et al., 2019). The WaveNet implementation in PyTorch exactly followed the descriptions787

in (Espinosa et al., 2022). Model of an Idealized Moist Atmosphere (MiMA) (Jucker &788

Gerber, 2017; Garfinkel et al., 2020) is maintained at https:// github.com/mjucker/MiMA789

and available at https://doi.org/10.5281/zenodo.3984605. The model code, forpy790

coupling code, trained NNs, run parameters, and modified configuration for MiMA are791

available at https://github.com/yangminah/GWPRebalance (Yang, 2024). The cou-792

pling library, forpy, developed and maintained by Elias Rabel is well documented and793

available at https://github.com/ylikx/forpy (Rabel et al., 2018).794
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Appendix A Formal Algorithm Details910

Algorithm 1 shows an example of how to incorporate the direct sampling imple-911

mentation of the resampling strategy within the framework of any stochastic gradient912

descent-type learning algorithm that processes batches of training samples at a time. Next,913

Algorithms 2 and 3 show the direct sampling and weighted loss sampling implementa-914

tions in detail. Algorithm 1 can easily be modified to use Algorithm 3, where the com-915

puted weights are passed into the loss function in the optimization step in line 6, and916

lines 1, 3, and 4 can be omitted.

Algorithm 1: Training structure.

Input: X , Training set; φ̂, machine learning model; {C(1)
n }Nn=1, counts of bins of

ideal histogram; t, linear parameter; max repeat, maximum repeat
parameter.r.

1 {I(0)n }Nn=1 ← Bin X into N bins. // I
(0)
n is the list of indices in the

nth bin.

2 while φ̂ needs further improvement do
// This while-block encompasses a pass over the training set.

3 I(t) ← resample({I(0)n }Nn=1, {C
(0)
n }Nn=1, t, max repeat)

4 Shuffle I(t) and divide it into B batches (I(t) = ∪Bb=1Ib).
5 for b=1:B do
6 Optimize φ̂ over X [Ib].

7 return φ̂ // Trained model

917

Algorithm 2: I(t) ← resample({I(0)n }Nn=1, {C
(1)
n }Nn=1, t)

Input: {I(0)n }Nn=1, binned indices; {C(1)
n }Nn=1, counts of bins of ideal histogram; t,

linear parameter; max repeat, maximum repeat parameter.

// I
(0)
n is the list of indices in the nth bin.

1 I(t) ← [ ] // I(t) is an empty list.

2 for n = 1 : N do

3 Compute α
(t)
n . // Use Eqs. (3) to (5).

4 l← c
(t)
n

5 if α
(t)
n ≥ 1 then

6 Append I
(0)
n floor(α

(t)
n ) times to I(t).

7 l← c
(t)
n −

(
count(I

(0)
n )× floor(α

(t)
n )

)
.

// l is now an integer that satisfies 0 ≤ l ≤ count(I
(0)
n ).

8 Append a random subset of I
(0)
n with length l picked without replacement to

I(t).

9 return I(t) // New indices.

Appendix B Architecture Details918

We process each of the input features separately with the 1D convolutions. To achieve919

this, we horizontally stack the features (vertical profiles of zonal wind, U , meridional wind,920
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Algorithm 3: J ← weights({I(0)n }Nn=1, {C
(0)
n }Nn=1, t, M)

Input: {I(0)n }Nn=1, binned indices; {C(1)
n }Nn=1, counts of bins of ideal histogram; t,

linear parameter; M, the size of dataset.

// I
(0)
n is the list of indices in the nth bin.

1 J ← zeros(M) // I(t) is an empty list.

2 for n = 1 : N do

3 Compute α
(t)
n . // Use Eqs. (3) and (4).

4 J [I
(t)
n ] = α

(t)
n

5 return J // New weights for samples.

V , vertical wind, ω, temperature, T as “channels”), resulting in a 2D input shape of nlev921

×4. (Note that the nomenclature of channels originates from Red Green Blue (RGB) chan-922

nels in image processing.) Additional information such as longitude, latitude, and sur-923

face pressure are concatenated to the flattened output of the encoder. The resulting 1D924

array is pushed through dense layers intended to represent global relations. Finally, the925

output from the dense section is reshaped to be processed via transposed convolutions926

and upsampling layers in the decoder.927
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