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ABSTRACT: The quasi-biennial oscillation (QBO) is the dominant mode of variability in the equatorial stratosphere. It
is characterized by alternating descending easterly and westerly jets over a period of approximately 28 months. It has long
been known that the QBO interactions with the annual cycle, e.g., through variation in tropical upwelling, lead to varia-
tions in the descent rate of the jets and, resultantly, the QBO period. Understanding these interactions, however, has been
hindered by the fact that conventional measures of the QBO convolve these interactions. Koopman formalism, derived
from dynamical systems, allows one to decompose spatiotemporal datasets (or nonlinear systems) into spatial modes that
evolve coherently with distinct frequencies. We use a data-driven approximation of the Koopman operator on zonal-mean
zonal wind to find modes that correspond to the annual cycle, the QBO, and the nonlinear interactions between the two.
From these modes, we establish a data-driven index for a “pure” QBO that is independent of the annual cycle and investi-
gate how the annual cycle modulates the QBO. We begin with what is already known, quantifying the Holton–Tan effect,
a nonlinear interaction between the QBO and the annual cycle of the polar stratospheric vortex. We then use the pure
QBO to do something new, quantifying how the annual cycle changes the descent rate of the QBO, revealing annual varia-
tions with amplitudes comparable to the 30 m day21 mean descent rate. We compare these results to the annual variation
in tropical upwelling and interpret them with a simple model.

SIGNIFICANCE STATEMENT: The quasi-biennial oscillation (QBO) is a periodic cycle of winds in tropical atmo-
sphere with a period of 28 months. The phase of QBO is known to influence other aspects of the atmosphere, including
the polar vortex, but the magnitude of its effects and how it behaves are known to depend on the season. In this study,
we use a data-driven method (called a Koopman decomposition) to quantify annual changes in the QBO and investi-
gate their causes. We show that seasonal variations in the stratospheric upwelling play an important but incomplete
role.
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1. Introduction

The quasi-biennial oscillation (QBO) is the leading mode
of variability of the equatorial stratosphere. It is characterized
by downward-propagating easterly and westerly wind regimes
with a period of approximately 28 months (Baldwin et al.
2001). While a tropical phenomenon, the QBO is known to
affect other regions of the atmosphere such as extratropical
surface variability (Garfinkel and Hartmann 2010; Anstey and
Shepherd 2014). The most well-known teleconnection is the
Holton–Tan effect: a warming of the boreal polar strato-
sphere during easterly QBO (Holton and Tan 1982).

While the oscillations of the QBO are perhaps the most reg-
ular mode in the climate system that are not directly linked to
the diurnal or seasonal cycles, the period of the QBO ranges
from 24 to 34 months. A key mechanism for the range of peri-
ods is the interaction between the QBO and the annual cycle
(Hampson and Haynes 2004; Krismer et al. 2013; Rajendran
et al. 2016). As the mean QBO period is not an integer multi-
ple of the annual cycle, any interactions between the two occur
irregularly. (The same could be said for interactions between
the QBO and other regular oscillations in the climate system,

e.g., El Niño–Southern Oscillation or the 11-yr solar cycle.) A
consequence of this irregular interaction means that it is hard
to quantify the effects of the annual cycle on the QBO or to es-
tablish what the QBO would look like during a given period in
the absence of the annual cycle.

Commonly used indices of the QBO, such as the zonal-
mean zonal wind at one (or more) pressure levels, or repre-
sentations in empirical orthogonal function (EOF) space,
e.g., Wallace et al. (1993), include nonlinear modulations of the
QBO by the annual cycle. This occurs even when the input data
are deseasonalized before the analysis. Removing the seasonal
cycle eliminates the linear, or average, influence of annual varia-
tions across all phases of the QBO but does not account for var-
iations that depend on the QBO phase. An example of such a
“nonlinear interaction” between frequencies is the Holton–Tan
effect: Planetary waves propagate deeper into the tropics when it
is both boreal winter and the QBO is in a westerly phase. A
more sophisticated data analysis technique is required to account
for nonlinear interaction between frequencies.

In this study, we propose the use of Koopman methods to
help solve this problem. We use a Koopman decomposition
to categorize and separate nonlinear interactions of the QBO
and the annual cycle, which allows for improved quantitative
understanding of the QBO in the context of its irregular inter-
action with the annual cycle. Koopman operator theoryCorresponding author: Claire Valva, clairev@nyu.edu
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translates between finite-dimensional nonlinear dynamical
systems and linear (albeit infinite-dimensional) systems. As
such, data-driven approximations of Koopman operators can
provide decompositions of the climate system without assum-
ing linearity. These decompositions identify a collection of
quasiperiodic modes and corresponding frequencies from
which one can analyze interactions between two modes of
known frequencies.

The separation between the known frequencies of the an-
nual cycle and the QBO allows Koopman methods to isolate
the phenomena and analyze the interaction between them
separately. An immediate result of this property is that we
can create an objective QBO index (and corresponding result-
ing pure QBO Koopman mode) that is independent of the an-
nual cycle.

To motivate the necessary mathematics, we entice readers
with the potential of the method. Figure 1 compares indices
from two Koopman-derived QBOmodes to raw ERA5 reanal-
ysis zonal wind (Hersbach et al. 2020) and an EOF QBO index
derived from Singapore radiosonde monthly mean winds (from
Newman and NASA/GSFC 2023, computed as in Wallace et al.
1993), all at 50 hPa. Each index tracks the oscillation of the
zonal-mean zonal wind at 50 hPa fairly similarly, switching from
easterly and westerly jets around the same time. The pure QBO
Koopman mode more smoothly tracks this evolution without
impact from the annual cycle and higher frequency variability.
The EOF-based index, as well as our “combination” Koopman
mode (which is explicitly designed to include nonlinear interac-
tions between the QBO and annual cycle), retains interannual
variability. In particular, one observes a shifting “shoulder”
(highlighted with red circles) when the westerly phase of the
QBO falls early in the calendar year. This feature is a result of
the interaction between the QBO and the annual cycle, which
will be more illuminatingly discussed in section 3b. While the
conventional EOF-based QBO index was computed from de-
seasonalized data, it clearly retains seasonal effects, more closely
following the Koopman mode built to include them.

The remainder of the manuscript is organized as follows. In
section 2, we give a brief overview of Koopman theory and
our data-driven algorithm, followed by a description of how
to create and interpret aggregate Koopman modes in section 3,
where the term aggregate refers to the inclusion of harmonic
frequencies which gives a more complete representation. We
use these aggregate Koopman modes to analyze the Holton–
Tan effect and variation of QBO descent rates with the annual
cycle in section 4. Finally, in section 5, we discuss other possibil-
ities for the use of this method, including application to other
phenomena and model assessment.

2. Koopman methods: Theory and application

We begin with a brief explanation of Koopman operator
theory and our data-driven Koopman approximation. We use
the computational method for approximating the Koopman
operator developed in Das et al. (2021). For a complete over-
view of this method, as well as precise mathematical state-
ments of Koopman operators, we refer the reader to the
appendices and supplemental material of Froyland et al. (2021)

and Lintner et al. (2023) for a detailed description of the algo-
rithm and to Das et al. (2021) for the development of the algo-
rithm and relevant spectral convergence results. We additionally
provide an overview of the algorithm in appendix A. The follow-
ing discussion, however, should be sufficient for understanding
the results and conclusions of this study.

a. Koopman formalism

Consider a dynamical system with states denoted as {xt}t2R
which is associated with a continuous map us that takes the
state at time t and pushes it forward to time s1 t, i.e., us(xt)5
xs1t. As a parallel, consider a numerical model. We may use a
numerical model to approximate us, integrating the dynamical
system (d/dt)x5 f (x) to determine xs1t based on the initial
condition xt.

Associated with dynamical systems are scalar functions g
called observables that take the state space as their domain.
For example, a possible g for the state space of the climate sys-
tem would be the function that computes or “observes” the
mean temperature of the atmosphere. Then, g(xt) would be
the mean temperature at time t.

The Koopman operator Ks describes the evolution of the
state of a dynamical system {xt}t2R by the action on observ-
ables of the system:

(Ksg)(xt) 5 g + us(xt) 5 g(xs1t): (1)

In our example, Ksg maps the observation of mean atmo-
spheric temperature forward by time s. The operator Ks is lin-
ear on the space of observables (or functions of the state)
even when the dynamics u are nonlinear. For a wide class of
systems of interest}i.e., those with an invariant probability

FIG. 1. Comparison between raw ERA5 reanalysis zonal-mean
zonal wind, averaged from 2108 to 108N (blue), an EOF-based
QBO index (dark purple), a pure QBO mode (Koopman derived,
pink), and a combination QBO and annual cycle mode (Koopman
derived, green) at 50 hPa. Reanalysis and the Koopman-derived
modes are mean zonal-mean zonal wind between. The Koopman-
derived modes have been normalized to have the same mean as
the reanalysis winds. Similarly, the EOF index has been rescaled to
have the same standard deviation as the Koopman-derived mode
(pure QBO with annual interactions) and the mean of the reanaly-
sis for comparative purposes. A shoulder in the zonal wind when
the WQBO phase occurs during early boreal winter is indicated by
red circles.
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measure (see Das et al. 2021 for a precise statement)}there
is an alternative formulation of Ks by a skew-adjoint linear
operator V, which is called the Koopman generator, that is
analogous to a derivative:

Vg 5 lim
t"0

Ktg 2 g
t

, (2a)

Ktg 5 etVg, (2b)

where the exponential of an operator is defined using the

series form for e, i.e., eA 5∑k

1
k!
Ak. Here, Eq. (2a) defines

the action of V onto the function g, and Eq. (2b) shows how
V generates the Koopman operator Kt.

This formulation allows a spectral decomposition of V to
serve as coherent feature extraction for dynamical systems
through the eigenproblem:

etVzk 5 etvkzk, (3)

where the eigenfunctions zk evolve predictably according to
the eigenfrequency vk. As V is a skew-adjoint operator in this
setting (where there is an invariant probability measure), all
vk will be purely imaginary. As such, the eigenfunctions zk
are periodic modes that capture the evolution operator. If the
evolution of the full system (or a particular feature of interest)
is well described by a reasonably small set of eigenfunctions
zk, then there is an efficient representation of the dynamics
that is inherently predictable.

The Koopman formalism also allows for eigenfrequency–
eigenfunction generation given already known eigenfunctions.
Suppose that you have eigenfrequencies a and b which corre-
spond to the eigenfunctions a and b. Then, there will also be
an eigenpair with eigenfrequency i(a 1 b) and eigenfunction
ab (Reed and Simon 1972):

eVtab 5 eiataeibtb 5 ei(a1b)tab:

We discuss the relevant consequences of this construction
property in section 3a, but one can think of this generation
property as accounting for harmonics (of the form 2a and a2)
and nonlinear interactions between components of a dynami-
cal system with different frequencies (here, a and b). In later
sections, we focus on the nonlinear interactions of this kind
that can be physically interpreted, i.e., that have eigenfre-
quencies of the form a 1 b, where a and b correspond to fre-
quencies of interest. Other nonlinear interactions may exist in
the data that cannot be identified in this way.

b. Data-driven Koopman approximation

We can find decompositions of the climate system without
assuming linearity by implementing this Koopman formalism.
Given data, we want to find the Koopman eigenfunctions zk
and associated frequencies vk to build a decomposition of
Koopman modes.

This method provides a dynamically meaningful decompo-
sition that can represent nonlinear dynamics, overcoming
some of the limitations of methods such as EOFs (Monahan

et al. 2009). Other methods for extracting (and prediction of)
oscillations from the climate system include singular spectrum
analysis (Ghil et al. 2002) and linear inverse models (Penland
1996; Albers and Newman 2021). We are interested in study-
ing nonlinear interactions, and the Koopman approximation
method chosen here is skilled at finding nonlinear interactions
via eigenfrequency generation, which we discuss more in
section 3, as well as having convergence and stability guaran-
tees in the large data limit. Previous uses of this method have
included analysis of El Niño–Southern Oscillation (ENSO;
Froyland et al. 2021) and identification of the Madden–Julian
oscillation (MJO; Lintner et al. 2023).

From given input data D of size Nt 3 Nd (time by space), we
approximate the Koopman generator V with N eigenfrequency–
eigenfunction pairs (vk, zk) of V. As V is a skew-adjoint opera-
tor, eigenvalues should be purely imaginary and come in com-
plex conjugate pairs, and we index our eigendecomposition such
that im(vk) 5 2im(v2k) and zk 5 z2k. Each eigenfunction zk
will have a mean of zero. Diffusion is introduced to ensure
computational stability, resulting in the eigenvalues having a neg-
ative real part. As such, with this particular algorithm, values
of |re(vk)| increase monotonically with the Dirichlet energy
Ek 5

� |=zk|2, a measure of eigenfunction regularity. We order
the pairs (vk, zk) such that |re(vk)| increases with k. This order-
ing serves as a proxy for numerical approximation error and has
been used with empirical success (Das et al. 2021).

The Koopman eigenpair corresponding to an extremely
regular cycle (such as the annual or diurnal cycles) will be eas-
ier to resolve numerically due to its regularity. As the magni-
tude re(vk) increases with the Dirichlet energy (and as such,
eigenfunction regularity), we can alternatively interpret the
magnitude of re(vk) to roughly correspond to the periodicity
of a given Koopman mode: The smaller |re(vk)|, the more pe-
riodic. There exists an alternative eigenvalue ordering based
on autocorrelation decay (proposed in Giannakis and Valva
2024) which gives similar results.

Additionally, there will always be an eigenfrequency v0 5

0, where z0 ; 1 is constant, corresponding to the mean state
of a given system. We then have N Koopman eigenpairs
where N 5 2L 1 1, for L complex conjugate pairs of frequen-
cies vk and a single mean state corresponding to v0.

From these eigenpairs, we compute Koopman modes Mk

from linear projections of wanted target data onto the eigen-
function zk. As we obtain Mk via projection, Mk is not limited
to the size or variables of the initial input data D and can in-
stead be extended to a larger physical area, different observed
variables, or extended time period (similarly to EOFs). An
important difference in output between the Koopman analy-
sis and EOFs, however, is that the modesMk are not necessar-
ily orthogonal to each other. If we were to compute Mk via a
projection on the initial input data for all k, we can recover
the complete data, i.e., ∑

N
k Mk 5D, when the number of

modes N is equal to the number of time samples Nt. However,
we choose to compute only a limited number of modesN,, Nt

for better computational and analysis efficiency: For very
large k, we expect the modes Mk to be less well resolved, to be
less approximately periodic, and to be of generally small
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magnitude. The goal is to find a small subset of well-resolved
modes that capture the variability of interest.

In our study, we project the Koopman eigenfunctions onto
data on all pressure levels, while the input data for the eigen-
problem are only levels between the upper troposphere and
the middle stratosphere. In Fig. 2, we give a visual overview
of the inputs and outputs of this method. We show a sample
interval of the input data (zonal-mean zonal wind from 10 to
125 hPa) and one of the output Koopman eigenpairs. The
Koopman eigenfunction zk is associated with an eigenfre-
quency of 0.427 37 yr21 ’ 28-month period, and the Koop-
man mode Mk is given from the projection of the zonal-mean
zonal wind from 1 to 1000 hPa onto zk. This Koopman mode
has many aspects of the QBO, as to be expected from its pe-
riod, including the downward-propagating easterly and west-
erly jets. As discussed in section 3, a more complete
representation of the QBO requires the inclusion of addi-
tional harmonics.

One potential limitation of the used method is the assump-
tion that the dynamical system is stationary with an invariant
probability measure. Clearly, this assumption is not strictly true
for postindustrial climate data, but this violation does not ap-
pear to greatly affect results. Highly nonstationary data will re-
sult in a decomposition with eigenfunctions with nonzero mean
and a purely real eigenfunction}essentially trend modes in the
decomposition. No trends appear in our analysis of the histori-
cal record, but they could (and do) appear in the analysis of
longer climate change projection simulations or variables with
more obvious trends, such as tropical sea surface temperatures.

Finally, it has been found that approximations of this kind
can be improved with a technique called delay embedding,
e.g., Ghil et al. (2002) and Giannakis (2019). Here, we replace
the input data D with a larger D̂ of size [Nt 2 (Ne 2 1)] 3
(Nd 3 Ne). Now, each row of D̂ includes observations from
the Ne 2 1 previous time points, i.e.,

D̂ t 5 [Dt, Dt21, …, Dt2(Ne21)]: (4)

This acts to insert memory of previous time steps into the
data. The computation of Koopman eigenvalues and eigen-
functions proceeds as previously described, where we substi-
tute D̂ for D. A rule of thumb is to choose the number of
delays Ne to be on the order of the time scale of the phenom-
ena of interest. For example, in this work studying the QBO,
we use an embedding corresponding to approximately 23
months.

3. Construction of a pure QBO and related modes via
Koopman decomposition

We perform and interpret a Koopman decomposition of
zonal-mean zonal wind of the stratosphere. We use these re-
sults to create the QBO index (seen in Fig. 1), as well as ag-
gregate Koopman modes that correspond to the construction
of a pure QBO mode, an annual cycle mode, and a QBO–

annual cycle interaction mode.
We use 5-day averages of zonal-mean zonal-wind ERA5 re-

analysis (Hersbach et al. 2020) from 1979 to 2020 at seven

pressure levels between 125 and 10 hPa and include all lati-
tudes. We choose a 5-day average to decrease the high fre-
quency variability and the computational expense. The data
are density and area weighted and then delay embedded with
Ne 5 140 samples. Results were similar, both qualitatively
and quantitatively, with varied embedding lengths and a
7-day average rather than five. We compute 50 Koopman ei-
genfunctions (51 including the eigenpair corresponding to the
Koopman mode that is the time mean). The Koopman modes
Mk are projected onto ERA5 data at 21 pressure levels be-
tween 1000 and 1 hPa.

a. Interpretation of eigenfrequencies

Each Koopman mode has an associated frequency. For the
well-resolved modes, we want to be able to interpret these
frequencies in terms of known phenomena. We emphasize
that this method does not allow for targeting frequencies a
priori, i.e., there is no point in which we specify that we would
like to find an eigenfrequency of once every 28 months or of
the annual cycle. The input data can, of course, affect results:
The delay embedding was chosen to emphasize interannual
variability. Additionally, if the data are too coarsely sampled,

FIG. 2. Visual overview of the Koopman decomposition method
that shows the input data (a) zonal-mean zonal wind averaged be-
tween2108 and 108N, (b) one of the N scalar Koopman eigenfunc-
tions, here with frequency v 5 0.427 37 yr21, and (c) zonal-mean
zonal wind between 2108 and 108N of the associated mode Mk,
which is computed by projecting reanalysis data onto the eigen-
function. Note that the y-axis range changes between the top and
bottom panels. The dashed lines in (c) correspond to the range of
the data in (a).
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we can miss oscillations. In this case, the diurnal cycle cannot
be observed given that our input data have a sampling
frequency of 5 days21. The pressure levels were chosen to pri-
oritize variability at the levels of the QBO. Using input data
that extended to 1 hPa decreased the resolution of the results,
given the prevalence of the semiannual oscillation.

In Fig. 3, we plot all eigenvalues with positive frequencies
(the eigenvalues of negative frequencies are simply the com-
plex conjugates) in the complex plane, shaded by the log of
the (density and area weighted) variance of each mode. As
the eigenfunctions are ordered by their effective periodicity
and regularity, one is not guaranteed that the top modes cap-
ture a substantive fraction of the variance. The Koopman ei-
gendecomposition is constructive, meaning that we expect
harmonics of significant modes (modes with integer multiples
of the base frequency) as well as interactions between modes
(modes that are integer linear combinations of frequencies).

The leading eigenvalues}in both the sense of smallest real
part (rightmost) and highest variance (darkest)}correspond to
the annual cycle or harmonics thereof with integer-valued fre-
quencies. We also see frequencies that correspond to harmonics
of the QBO, 0.4286 m yr21 for m 5 1, 2, … , which correspond
to a period of 28 months. Finally, we have identified modes that
we call “QBO–annual cycle interaction” modes with frequen-
cies that are approximately equal to n 1 0.4286 m yr21 for inte-
gers m and n within a selected tolerance, chosen here to have a
period that is within 10 days (twice the sampling frequency) of
the desired period.

Some eigenfrequencies remain unidentified. Of these, we
conjecture that some could be sorted into the three previously
discussed categories}particularly higher harmonics of the
QBO or the interaction terms}but they do not fall into the
desired frequency tolerance. Neglecting these modes mini-
mally affects the results in later sections, as the unidentified
modes are relatively small when compared to zonal-mean
zonal-wind target data: The unidentified mode with the high-
est variance (0.05 m2 s22) has a root-mean-square amplitude
(over all levels) of 0.17 m s21 and a maximum value (at any
level) of 2.6 m s21. For reference, the zonal-mean zonal-wind
target data have a variance of 327.0 m2 s22 and a root-mean-
square amplitude of 12.9 m s21.

b. Aggregate Koopman modes

From the eigenfrequency groupings discussed in section 3a,
we can create corresponding aggregate Koopman modes
which we will refer to as an annual cycle mode (made up of
integer frequencies), a pure QBO mode (frequencies of the
form 0.4286 m for integers m), and an annual cycle–QBO in-
teraction mode (frequencies of the form n 6 0.4286 m). The
annual cycle aggregate mode is the sum of the projections of
5 eigenfunctions (and their conjugates), the pure QBO aggre-
gate mode is made up of the projections of 3 eigenfunctions,
and the annual cycle–QBO interaction aggregate mode is
made up of 8. Each of these aggregate modes is the sum of
the Koopman modes Mk that correspond to the desired vk.
For example, the aggregate mode for the annual cycle can be
written asMannual 5∑k,vk’nMk.

The aggregate Koopman modes isolate particular phenom-
ena: The pure QBO mode represents the evolution of the
QBO in the absence of any interaction or interference by the
seasonal cycle. The mean of the pure QBO mode in any
month of the year, say December (not shown), is zero up to
sampling uncertainty. Any impact of the annual cycle on the
QBO will appear in the annual cycle–QBO interaction aggre-
gate mode.

Figure 4 illustrates these aggregate modes and compares these
to a slice of raw zonal-mean zonal-wind reanalysis (Fig. 4a). The
sum of three aggregate modes (Fig. 4f) nearly captures the full
reanalysis zonal wind, but for high frequency variability, and
shows how the flow is dominated by the QBO and annual cycle.
At first glance, the pure QBOmode (Fig. 4c) seems to lack some
common characteristics of the QBO including the varying de-
scent of the zero line. The sum of the QBO and its interactions
with the annual cycle (Fig. 4e) captures the variability of its de-
scent rate. When the annual cycle is added (Fig. 4f), the bulk
characteristics of the flow are recovered.

c. Koopman eigenfunction as QBO index

In addition to constructing aggregate Koopman modes, we
can also use the Koopman eigenfunctions to create indices.
Namely, we use this to create an “objective QBO index” from

FIG. 3. Numerically computed Koopman eigenvalues plotted on
the complex plane. The y-axis value is the frequency of each eigen-
mode, while the x axis can be used as a proxy for the quality or the
periodicity of the numerical mode [as a perfect computation would
have re(v) be 0]. Color denotes the log of the density- and area-
weighted variance of each Koopman mode, while dotted and solid
horizontal lines denote frequencies corresponding to integer multi-
ples of the QBO (;0.4286 yr21, denoted with square markers) and
the seasonal cycles, respectively. Diamond-shaped markers denote
QBO–annual cycle interaction frequencies, i.e., those of the form
n6 0.4286 m within a 10-day tolerance on the desired period.
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the single Koopman eigenfunction with frequency v 5 0.4274
that is independent of annual effects. As we have a scalar eigen-
function, we can create a continuous index of the QBO defined
by its phase angle. We plot this in Fig. 5 and use this index to di-
vide the QBO into four phases: a pure westerly phase (denoted
as 1:W), a descending easterly phase (2: E" W), a pure easterly
phase (3: E), and a descending westerly phase (4: W " E). The
number of phases is arbitrary, but 4 is chosen to balance a clarity
of the QBO state and the need for sufficient data for statistics.

The time span plotted includes the QBO disruption that
took place in 2016 that interrupted the descent of the westerly
phase of the QBO (Barton and McCormack 2017). It materi-
alized in this QBO index as the diversion and loop from the
usual oscillation that returned to its usual path after the con-
clusion of the disruption.

Figure 5 examines whether our pure QBO aggregate mode
captures known characteristics of the QBO. While the QBO
index is defined from a single Koopman eigenfunction, we plot
composites of the pure QBO aggregate mode in the figure to
include variability associated with harmonics. The composites
capture the arch-shaped, or horseshoe-shaped, wind anomalies
that extend downward from the QBO region in the subtrop-
ics, conjectured to be associated with the QBO mean meridio-
nal circulation by Garfinkel and Hartmann (2011). These can
be identified in the phase 2, 3, and 4 composites as a down-
ward extension of wind anomalies beginning at approximately
50 hPa. Interestingly, the pure QBO mode captures modest
strengthening (weakening) of the polar vortex during westerly
QBO (easterly QBO), a shadow of the Holton–Tan effect.
We investigate this particular aspect more in section 4a.

FIG. 4. Comparison between the tropical mean zonal wind and the aggregate modes repre-
senting the annual, pure QBO, and interaction between the QBO and the annual cycle. We
plot means of zonal-mean zonal wind between2108 and 108N of each component between 2003
and 2008. The time mean winds are removed for clarity. (a) The raw wind anomalies. (b) Sea-
sonal modes, i.e., approximately integer frequencies. (c) Pure QBO modes, frequencies that are
multiples of 0.4286. (d) Seasonal–QBO interaction modes, frequencies of the form n 6 0.4286
m. (e) Total QBO, sum of (c) and (d). (f) Total seasonal and QBO effects, sum of (b) and (e).
(f) Reconstructs the (a) total wind, except for short time variability.
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4. Understanding QBO–annual cycle interaction with
Koopman modes

We can now use the aggregate Koopman modes to investi-
gate the nonlinear interaction between the QBO and the an-
nual cycle. We first replicate known results regarding the
Holton–Tan effect (section 4a) as further proof of concept for
the use of these modes. We then use them to quantify the ef-
fect of seasonality on the QBO descent rate via comparison to
the pure QBOmode (section 4b).

a. The Holton–Tan effect

The Holton–Tan effect, first noted in Holton and Tan
(1982), refers to the QBO influence on the strength of the
wintertime stratospheric polar vortex in the Northern Hemi-
sphere. Specifically, the polar vortex is weaker and warmer
during easterly QBO (EQBO) and stronger and colder during
westerly QBO (WQBO), as westerlies in the subtropics favor
more equatorward propagation of planetary Rossby waves,
thereby shielding the polar vortex (Lu et al. 2020).

In Fig. 6, we show composites of EQBO subtracted from
WQBO in boreal winter (DJF) using the full reanalysis record
of winds versus the winds captured by our aggregate Koop-
man modes. Figure 6a is a composite formed from ERA5 re-
analysis, where climatology EQBO (WQBO) is defined as
mean reanalysis winds at 50 hPa over the season being less
than 23 m s21 (greater than 3 m s21) and the two are then
subtracted. The remaining three panels are formed similarly,
where we compute climatologies for a given aggregate mode
over the EQBO and WQBO defined from reanalysis. We do
not include the 2016 QBO disruption in these composites.

The use of the Koopman modes allows us to separate the
Holton–Tan effect into a pure QBO component that is inde-
pendent of the time of year (Fig. 6b is identical for any other
season; not shown) and a nonlinear interaction component
that is only present during DJF (Fig. 6d). Figure 6b and the
QBO index composites (Figs. 5b,e) indicate a mean strength-
ening (weakening) of the polar vortex during WQBO
(EQBO).

The annual cycle–interaction aggregate mode captures the
strengthening of the polar vortex in DJF. This strengthening
is reversed in other seasons, where the aggregate mode is
weakly negative. This cancels out the mean strengthening of the
polar vortex in the pure QBO composites in other seasons.

One could create an equivalent figure where the determina-
tion of whether a given winter belongs to either EQBO or
WQBO categories is done by using either the phase of the
scalar QBO index or the value of the zonal wind from the
pure QBO aggregate mode. While either of these would be a
more “objective” way to define the phases of the QBO, we
kept with the standard convention for consistency. The other
approaches produce similar results; see appendix C. Addition-
ally, all the composites closely match similar composites in
the literature (Baldwin et al. 2001; Lu et al. 2020).

The biggest differences between the Koopman reconstruc-
tions of the composite from reanalysis are present in the up-
per stratosphere, which indicates that we are excluding some
stratospheric processes with our Koopman modes. We conjec-
ture that this discrepancy may be partially due to the 11-yr so-
lar cycle, which has been suggested to influence the polar
vortex and has a lower frequency than any of our resolved

FIG. 5. The scalar (complex) Koopman eigenfunction corresponding to eigenfrequency v 5 0.427 is used to make composites of the
Koopman modes, achieved by splitting the QBO into four phases based on the quadrant of the Koopman eigenfunction. (a) Colors of the
scatterplot of the Koopman eigenfunction correspond to phases 1 through 4: a pure westerly phase (1: W), a descending easterly phase
(2: E " W), a pure easterly phase (3: E), and a descending westerly phase (4: W " E). The “loop” in the pink scatter points (phase 4,
descending westerly) corresponds to the disruption of the QBO that took place in 2016.
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Koopman modes. In addition, this analysis does not account
for ENSO interactions by design, which have also been noted
to affect the polar vortex (Anstey and Shepherd 2014).

b. The annual cycle in QBO descent rate

Studies of the influence of the annual cycle on QBO de-
scent rates (specifically the effects of tropical upwelling) have
been done, notably using descent rate models, such as in
Rajendran et al. (2018). Previous work was somewhat limited
in that conventional methods cannot access a version of the
QBO that is not influenced by the annual cycle. As such, an
investigation into how the descent rate of the QBO is affected
by the seasonal cycle must either reform the problem as the
seasonal preference of phase onsets, as done in Dunkerton
(1990), or look at trends in the data and compare to theoreti-
cal models.

The onset months of the QBO westerly or easterly phases
have been observed to have a seasonal preference, and the
period of the QBO can vary significantly from the 28-month
mean (Dunkerton 1990; Hampson and Haynes 2004). The
perturbation of the QBO by the annual cycle is thought to be
the primary reason for the variation in period between cycles,
although ENSO and the solar cycle may also contribute.

The Koopman formulation of the QBO allows us to see the
seasonal preference of onset months as a result of nonlinear
interactions of the annual cycle. Figure 7 contains histograms
of zero-line crossings at 50 hPa in the pure QBO aggregate
Koopman mode and the aggregate mode with additional an-
nual cycle interactions. In the histogram of the aggregate
mode that includes both the QBO and annual cycle interac-
tions, we see preferential seasonal transitions from easterly to
westerly winds (or vice versa) with a significant peak in spring
(May) and a secondary peak in fall (October)}similar to

those analyzed in previous literature (Hampson and Haynes
2004). A transition in July or August has never been ob-
served. In contrast, the transition months of our pure QBO
mode show little preference in the timing of the onset. We hy-
pothesize that these transition months are drawn from a
uniform distribution; i.e., the pure QBO mode has no prefer-
ential onset. We can test this with a x2 test, choosing the null
hypothesis to be that the QBO transition month is drawn
from a uniform distribution; the expectation for the number
of QBO transitions in each month is 31 December, given the
31 transitions in the analyzed record, not counting the QBO
disruption in 2016. For the pure QBO, we cannot reject the
null hypothesis, with x2 5 5 and a p value of 0.93. On the
other hand, for the aggregate mode that contains the QBO
and annual cycle interactions, we find that x2 5 32.8 and p 5

5.5 3 1024, meaning that it would be quite unlikely for there
to be a uniform preference of QBO transitions. This statistical
result is not perfect, as there are a limited number of QBO
transitions in the data, and each transition is not truly inde-
pendent of any other. However, the differences in these two
aggregate modes strongly indicate that the distribution of
QBO transitions is controlled by nonlinear interactions with
the annual cycle.

To probe the annual variation in QBO further, we compute
the descent rate of the QBO by tracking the zero-wind line,
that is, the descent of the E " W or W " E phase transition.
One could equivalently track the westerly or easterly maxima,
but we found that this introduces more noise (not shown), as
the height of the maximum is more sensitive to small pertur-
bations. For a given wind profile, we calculate the location of
the mean zero-wind line between 2108 and 108N, estimating
the exact pressure by interpolating in log pressure (as recom-
mended in Hersbach et al. 2020). We restrict the zero line to

FIG. 6. Composites of zonal-mean zonal wind during boreal winter (DJF) of WQBO–EQBO as measured by
mean winds over the season at 50 hPa. (a) Reanalysis}the typical composite shown for the Holton–Tan effect.
(b),(d) Compositions of the pure QBO aggregate mode and QBO–annual cycle interaction aggregate mode. (c) The
sum of (b) and (d). In the case of a perfect reconstruction from the Koopman modes, we would expect (c) to be the
same as (a); differences between these panels are on the order of 3 m s21.
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pressures of 10–125 hPa (inclusive), to limit issues of defining
a descent rate when there are multiple zero lines in a single
snapshot (as is often the case when a new phase begins to de-
scend from the upper stratosphere while the other is ending).
We compute the descent rate as the derivative computed by a
centered difference and then smoothed by a 30-day rolling
window. We exclude data from periods where the zero line
“jumps up”; i.e., there is a change between descending east-
erly and westerly winds (or vice versa).

In Fig. 8, we plot the zero crossing descent rates as a func-
tion of the time of year. Figure 8a shows the descent rate com-
puted from the pure QBO aggregate mode, where color
differentiates the phases of the QBO. The phases correspond
in color and definition with those shown in Fig. 5. The system-
atic undulations of the trajectories reflect changes in descent
rate with height, but consistent with the Koopman definition
of the pure QBO aggregate mode, there is no dependence of
the pure QBO descent rate on the time of year.

Figure 8b is the same as Fig. 8a, but computed from the
aggregate Koopman mode that includes the nonlinear QBO–

annual cycle interactions. The third (Fig. 8c) is the difference
in descent rates between the two above panels and quantifies
how much the amount of annual cycle–QBO interactions ei-
ther slow or speed up the descent of the QBO. We observe a
marked semiannual modulation of descent rate in the QBO
aggregate mode with additional annual effects, both in the
raw descent rate (Fig. 8b) and more clearly in the difference
from the pure QBO descent rate (Fig. 8c). This semiannual
pattern is noisier for phases 1 and 3 (pure westerly or east-
erly). We expect phases 1 and 3 to be more variable than
2 and 4. Phases 2 and 4 are descending westerly and easterly,

FIG. 7. (top) Histograms of zero-line crossings at 50 hPa in the
pure QBO mode and (bottom) the aggregate mode with nonlinear
annual cycle interactions. Colors denote either an easterly to west-
erly transition (red) or a westerly to easterly transition (blue).
While the histogram counting the pure QBO mode exhibits uni-
form pattern zero crossings, (bottom) shows preferential transitions
in boreal spring and no crossings in July or August.

FIG. 8. Comparison of QBO zero-line descent rate by time of
year between (a) the pure QBO aggregate mode and (b) the QBO
with the addition of nonlinear QBO–annual cycle interactions. Each
scatter point is colored by the phase (as defined by the Koopman
eigenfunction metric in Fig. 5) that the QBO was in when the rate
was measured. (c) The difference between the two above panels
and the change in descent rate of the QBO due to the nonlinear
interaction between the annual cycle and the QBO. A negative
value means that the annual cycle–QBO interactions during this
time of year slow the descent rate, while a positive difference
means that the QBO will descend faster.
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respectively, where the zero-wind line cleanly descends be-
tween 10 and 125 hPa. Phases 1 and 3 contain “jumps” of the
zero line between the bottom of the QBO and the top, lead-
ing to much of the spread.

Koopman analysis extracts a semiannual variation in de-
scent rates on the order of 30 m day21, which is comparable
in magnitude to the mean descent rate. There is pronounced
annual variability, with a stronger peak in May than in October.
The peaks in May and October are consistent with the enhanced
number of QBO transitions during these months. We can sim-
ilarly explain the few QBO transitions in January and August,
as the descent of the zero line essentially stalls completely
during these months.

Three potential mechanisms for the perturbation of QBO
descent rates have been identified by Hampson and Haynes
(2004): 1) the annual cycle in tropical upwelling caused by the
Brewer–Dobson circulation, 2) seasonal variations in the
wave forcing that drives the QBO, and 3) seeding from above
by the semiannual oscillation (SAO).

We first investigate to what extent seasonal variation in
tropical upwelling is associated with variation in QBO descent
rates. Figure 9 shows the relationship between variation in de-
scent rates and tropical upwelling. We compute the linear re-
lationship between the annual cycles of the transformed
Eulerian mean tropical upwelling w∗ as a function of pressure
to the mean annual cycle in descent rates. We consider the re-
sidual vertical velocity w∗ between 3 and 100 hPa, as com-
puted by Serva et al. (2024). The black markers correspond to
annual mean descent rates regardless of the QBO phase,
while other colors denote subdivision into one of the QBO
phases.

The left panel shows the regression coefficient and its 95%
confidence interval at each pressure level. It indicates how
much a 1 m day21 change in w∗ impacts the descent rate of

the QBO. Naively, if changes in the QBO descent rate were
the result of a simple perturbation of the advection, we would
expect a slope of 21. The right panel shows the squared cor-
relation coefficient or R2 of the corresponding linear fits on
the left, which suggests what fraction of the variability in
mean QBO descent rates can be explained by variation in w∗.

The slope of the linear fits is negligible at 100 hPa but
quickly transitions to nearly around 21 from 50 to 15 hPa.
This suggests that the amplitude of annual variations in w∗ is
consistent with the amplitude of annual variations in descent
rate, agreeing with the naive expectation that one can qualita-
tively explain the descent rate changes simply by changes in
advection.

The change in the correlation coefficient with height is simi-
lar to that of the slope. At 100 hPa, the correlation coefficient
is essentially zero, suggesting that the annual variation in w∗

at the base of the tropical stratosphere has nothing to do with
the annual variation of descent rate. As you go higher in the
stratosphere, R2 steadily increases with a maximum between
20 and 5 hPa, where 80% of the variation in descent rate is
consistent with the variation in w∗. However, the value of the
slope peaks lower than R2, due to the fact that the magnitude
of variability in w∗ increases with height in the stratosphere,
while the general shape of the seasonal variation remains the
same (see the leftmost panel of Fig. 12). Another explanation
for this vertical structure is that w∗ exhibits a more annual cy-
cle in the lower stratosphere (and hence unrelated to the
dominant semiannual cycle that is observed) but becomes
more decidedly semiannual in the upper stratosphere. As
such, R2 increases with height, where the variability of the
QBOmore strongly matches that of w∗.

In both the combined data and in each QBO phase, w∗ po-
tentially accounts for a significant amount of the seasonal var-
iability in QBO descent rates. For the easterly and descending

FIG. 9. (left) The slope at different pressure levels of the linear fit between descent rate (mean of time of year) vs
w∗ (mean between 2258 and 258N). Error bars denote the 95% confidence intervals of the slope. Black scatter points
correspond to the time of year mean in descent rate over all phases of the QBO, while colored points correspond to
each phase. Slope magnitudes peak at 30 hPa. (right) Corresponding R2 (variability explained) values for each of the
linear fits in the left figure. The R2 values peak at 15 hPa for most phases.
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easterly phases (phases 2 and 3), the simple linear relationship
appears to work well, though this is diminished for the west-
erly phases (1 and 4). As different phases of the QBO corre-
spond to different average heights of the zero crossings and to
different dynamics, these changes are not necessarily surpris-
ing. We should be cautious not to overinterpret these differ-
ences between QBO phases, as the subdivision of data
decreases the signal-to-noise ratio.

The analysis in Fig. 9 also allows us to make predictions
about how future changes in tropical upwelling may affect the
speed of the QBO descent. For example, consider an increase
in w∗ by 0.1 mm s21 ’ 9 m day21, consistent with estimates
from quadrupling of carbon dioxide (CO2) experiments for
several coupled chemistry models (Chiodo et al. 2018). Based
on this linear relationship, an increase in upwelling corre-
sponds to an approximately equal slowdown of the QBO
descent, translating to an average of 9 m day21 decrease
in descent rates of the QBO and an increase in its period to
40 months. This prediction assumes there are no changes in
other factors that could drive the QBO descent, such as the
wave forcing. Some models do predict an increase in the
QBO period, but others predict a decrease (Richter et al.
2022).

Correlation analysis cannot establish that w∗ causes varia-
tions in QBO descent rates, as there could be a third factor
that drives both the changes in the QBO and w∗. In particu-
lar, seasonal variations in the wave forcing could influence
both w∗ and the QBO directly. Similarly, the SAO affects w∗

in the upper stratosphere. The wave forcings of the QBO
are difficult to diagnose; in particular, gravity waves are not
well resolved in the reanalysis. We therefore turn to a sim-
ple 1D model to untangle w∗ from the wave forcing and the
SAO.

c. Interpreting the results with a 1D model of the QBO

We use a model that is a hybrid of Holton and Lindzen
(1972) and Plumb (1977). We solve the following equation for
the zonal wind u:

­tu 1 w∗­zu 2 K­2zu 5 G(z, t) 1 S(u, z), (5)

where t and z are the time and vertical coordinate, w∗ is the
(prescribed) vertical advection, K is a constant diffusivity,
G(z, t) drives the SAO, and S(u, z) is a monochromatic grav-
ity wave forcing.

Following Holton and Lindzen (1972), the SAO is pre-
scribed as

G(z, t) 5 2G
(z 2 28 km)

1000 m
vSAO sin(2pvSAOt) for z . 28 km,

(6)

where vSAO is the frequency of the SAO.
The gravity wave forcing S(u, z) assumes two identical

gravity waves of opposite phase, as in Plumb (1977), and is de-
tailed in appendix B. The gravity wave forcing was tuned to
give the QBO a 28-month period.

Each experiment described below reflects a 96-yr run,
where statistics are excluded for the first 12 years to avoid the
influence of initiation. We investigate how prescribing differ-
ent values of the model parameters affects annual descent
rates of the QBO. We define the descent rate of the QBO in
the simple model the same way it is defined in the analysis of
Koopman modes, by the change in height of the zero-wind
line. Portions of the two integrations, with and without annu-
ally varying w∗, are shown in Fig. 10.

We first ask if seeding of the SAO perturbs the descent rate
of the QBO by augmenting the magnitude of the function G.
We tested several values for the magnitude of G(z, t), trying the
values G 5 0, 3.28, 14, and 24 m s21. The value G 5 3.28 m s21

was estimated from reanalysis to match the SAO strength,
while 14 m s21 is the original magnitude from Holton and
Lindzen (1972). We found that the descent rate of the QBO
was completely insensitive to the value of G, even when other
parameters (such as w∗ were varied), indicating that the de-
scent rate only depends on the wave driving and the upwelling
in this model.

We next investigate how much variation the tropical
upwelling}which is prescribed independently of the wave
forcing}can explain the annual variation of the QBO in the
model. We compare model simulations without an annual
cycle, where w∗ is prescribed to be the climatological mean at
each level (analogous to the pure QBO Koopman mode) to
simulations with an annual cycle, where prescribed w∗ varies
with the annual cycle, repeating annually as illustrated in
Fig. 10. We quantify the effect of seasonal upwelling variation
on the annual descent rate as the difference between the

FIG. 10. Zonal wind from the 1D model for model years 40–46,
both with G (the parameter that sets the SAO strength) equal
to 14. (a) Zonal wind from the model where w∗ periodically varies
annually. (b) Zonal wind from the model where w∗ is fixed as the
climatology.
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model runs where w∗ varies annually and where the model is
the climatological mean.

Figure 11 shows the linear relationship between w∗ and
annual variation of the 1D model descent rates as a function
of pressure. For comparative purposes, we replot the data
from the analysis of the Koopman modes in Fig. 9. The
slope and correlation coefficient both peak at similar heights
(between 60 and 30 hPa). Unlike the observed QBO, the
slope that relates the 1D model descent rate to w∗ never sur-
passes 21, but R2 in the lower stratosphere is higher than in
reanalysis. Part of this difference is explained by the ex-
treme regularity of the 1D model compared to the climate
system, as well as the longer time period (84 yr) in which
we compute statistics. Both the slope and correlation coeffi-
cient peak lower in the atmosphere for the model than in
reanalysis.

To interpret these differences, we compare the 1D model
descent rate with that of reanalysis more directly. Figure 12
compares the annual variation in descent rate from the 1D
model (black, dotted line) and reanalysis (black, solid line) to
the value of w∗ at several pressure levels (various colors). The
variation in descent rate in reanalysis is about twice that of
the 1D model. We also see that while both the reanalysis and
the 1D model have a semiannual pattern in annual descent
rate, the timing of the peaks is different.

The fact that the descent rate of the 1D model is more
highly correlated with upwelling at lower levels (and less
correlated at upper levels) when compared to reanalysis can
be understood from the strength of semiannual variation.
Higher in the stratosphere, upwelling has a stronger semian-
nual variation, presumably in part due to the SAO, while
lower down (where the 1D model is more sensitive to w∗),
the annual cycle is more prevalent, causing different max-
ima in w∗. This appears to indicate that the true QBO is
more affected by upwelling higher in the stratosphere than

in the simple model. This could be due to the fact that
stratospheric upwelling itself is more important in our atmo-
sphere or that the winds higher in the stratosphere are bet-
ter correlated with another driver of annual changes in the
QBO (such as the semiannual oscillation or variations in the
wave forcing).

The results from this simple model are consistent with the
hypothesis that much of the variability in QBO descent rates
is controlled by mean deviations in tropical upwelling, even
if the importance of winds at different heights varies from
the true system. However, upwelling alone cannot reproduce
the full seasonal cycle. Annual variation in wave driving
must play an important role in the variation of the descent
rate.

5. Conclusions and future directions

It has been long accepted interactions between the QBO
and the annual cycle lead to variation in the downward propa-
gation of the easterly and westerly phases of the oscillation,
including their descent rates. Quantitative investigation of
these interactions was difficult as conventional data analysis
methods are unable to easily untangle interactions between
the QBO and the annual cycle. The Koopman formalism is
well suited to this problem, as it is able to separate a periodic
element of a system from its nonlinear interactions with other
periodic modes of the system.

We have identified an objective, data-driven index of the
QBO that is independent of the annual cycle and performed a
decomposition of reanalysis data that separates the effects of
the QBO, the annual cycle, and the nonlinear interactions be-
tween the two phenomena. This allowed an investigation of
the strength of interactions between the QBO and the annual
cycle, quantifying to what extent the Holton–Tan effect is

FIG. 11. As in Fig. 9, but for the 1D QBO model (dashed lines)
and reanalysis QBO (black circles; as in Fig. 9, average over all
phases). As the 1D model has a top of 35 km ’ 5.8 hPa, w∗ above
5 hPa was excluded from the analysis.

FIG. 12. The seasonal cycle in descent rates for reanalysis
(solid line; the difference between the pure QBO mode and the
mode with added annual cycle interaction) and the 1D model of
the QBO (dashed line; the difference in model runs with sea-
sonally varying winds and without) with the negative deviation
from climatology of w∗ at several levels. The w∗ anomalies are
inverted because of their inverse correlation with the descent
rate.
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driven by nonlinear interactions between the QBO and the
annual cycle. We quantify how the annual cycle perturbs the
QBO descent rate, comparing it with annual variations in
tropical upwelling, with the aid of a classic 1D model of the
QBO.

The annual variation of the descent rate is large, of ampli-
tude of 30 m day21, equivalent to the mean descent rate. As
a result, the QBO essentially stalls out from January to
February and in July to August (Fig. 8), explaining the
dearth of phase transitions in these months (Fig. 7). Varia-
tion in tropical upwelling can account for a large fraction
of this variation, particularly in boreal winter. Changes in
wave forcing, however, must also play a role, particularly in
boreal summer.

Koopman formalism could have further desirable uses for
QBO investigation. Applying this method to data that are not
zonally averaged would allow for further insight (and possible
discovery) of teleconnections between the QBO and higher
latitudes that are present on smaller scales than phenomena
like the polar vortex. A similar analysis could also be done for
other variables of interest, such as temperature or outgoing
longwave radiation, to probe possible connections between
the MJO and QBO (Yoo and Son 2016).

Alternatively, we also anticipate that the Koopman decom-
position could allow for another avenue of QBO comparison
in large climate model evaluations. While advances in gravity
wave parameterizations have improved the QBO in compre-
hensive climate modes, replicating the Holton–Tan effect
with observed strength remains a challenge (Garfinkel et al.
2018; Zhang et al. 2019). Using the decomposition as we did
for the Holton–Tan effect (section 4a) could help to under-
stand where climate models get the Holton–Tan effect wrong:
is the QBO itself not well enough resolved, or is it the nonlin-
ear interactions between the QBO and the annual cycle that
are missing.

Finally, the modes found from the Koopman decomposi-
tion could also be used for investigation and prediction of
other aspects of the climate. Already, these methods have
been used successfully to find indices with improved pre-
dictability in both ENSO and the MJO when compared to
classical methods (Wang et al. 2020; Lintner et al. 2023).
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APPENDIX A

Algorithm Overview

The algorithm used to compute the Koopman decomposi-
tion from data was developed in Das et al. (2021). As noted in
the main text, we recommend the appendix and supplement of
Froyland et al. (2021) and Lintner et al. (2023) for thorough
explanations of the algorithms in the climate data context.
Here, we give an overview of the computational steps used in
this algorithm and refer readers to the associated GitHub re-
pository for full parameter and code information (https://doi.
org/10.5281/zenodo.15046953).

1. Delay embed data. Replace the input data D with a larger
D̂ of size [Nt 2 (Ne 2 1)] 3 (Nd ? Ne), so that

D̂ t 5 [Dt, Dt21, …, Dt2(Ne21)]:

2. Construction of nonlinear basis. We construct nonlinear
basis functions {uj} from an eigendecomposition of a
kernel matrix D constructed from delay embedded data.
We define Dij 5 k(D̂ i, D̂ j), where k is an appropriately
normalized, symmetric positive definite kernel function.
Then, the basis functions uj are determined from the fol-
lowing eigendecomposition:

Duj 5 n juj: (A1)

This is equivalent to nonlinear Laplacian spectral analysis
(NLSA) (Giannakis and Majda 2012). We truncate our ba-
sis to have total dimension N.

3. Approximation of Koopman generator in {uj} basis. Re-
call the formulation of the Koopman generator V:

Vg 5 lim
t"0

Ktg 2 g
t

: (A2)

The application of the approximate operator Ṽ acting on
a basis function uj is approximated with a finite-difference
scheme. The function KDtuj is approximated by a left shift
of the basis vectors uj, i.e., K

nDtuj(tk) 5 uj(tk1n). Then, Ṽ
(the approximate Koopman generator in the uj) is symme-
trized to give a skew-adjoint operator: V 5 (Ṽ 2 Ṽ ∗)/2.

4. Regularize operator with diffusion. A small amount of
diffusion is added to the Koopman generator V for
regularization:

W 5 V 2 aD, (A3)

where a is a small positive parameter.
5. Compute eigendecomposition. The final eigenfunction and

eigenvalue pairs (vj, zj) come from the eigendecomposi-
tion of W:

Wzj 5 vjzj: (A4)

6. Project data on eigenfunctions to create Koopman modes.
Project data D onto the eigenfunctions zj to get Koopman
modes Mj.
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APPENDIX B

1D Model of the QBO

For our experiments in section 4b comparing reanalysis
and a 1D model, we use a simple model of the QBO that is
a hybrid of Holton and Lindzen (1972) and Plumb (1977),
as implemented in PyTorch by Connelly and Shamir (2022).
We solve the following equation for the zonal wind u:

­tu 1 w∗­zu 2 K­2zu 5 G(z, t) 1 S(u, z), (B1)

where t and z are the time and vertical coordinate, w∗ is the
(prescribed) vertical advection, K is the diffusivity (0.3 m2 s21),
G(z, t) is the semiannual oscillation, and S(u, z) is the wave
forcing.

The wave forcing term parameterizes the momentum de-
position at critical levels as S(u, z)5 (21/r)­zF(u, z), where
r(z) is the density profile and the wave flux F(u, z) is writ-
ten as

F(u, z) 5∑
i
Aiexp 2

�z

zL

a(z)/N
ki(u 2 ci)2

[ ]
, (B2)

where Ai and ci are the wave amplitudes and wave speeds
and a(z) is the wave dissipation due to infrared cooling (see
Holton and Lindzen 1972). Here, we choose a two-wave
setup and choose Ai 5 61.18e 2 3 and ci 5 629 to obtain a
28-month QBO period.

The semiannual oscillation is prescribed as

G(z, t) 5 2G
(z 2 28 km)

1000 m
vSAO sin(2pvSAOt) for z . 28 km,

(B3)

where vSAO is the frequency of the SAO. We found that the
results of descent rates of the models were insensitive to the
amplitudeG of the SAO term.

We choose the model to have a domain top of zT 5

35 km and a bottom of zL 5 17 km with a grid spacing of
250 m. The model is run for 96 years including a 12-yr
spinup period with a time step of 12 h. The upwelling w∗ is
prescribed either to be the mean at each level or to be pe-
riodic over the year at each level. Log pressure interpola-
tion was used to match grid spacing.

APPENDIX C

Alternative Holton–Tan Figure

Fig. C1 is a variant of Fig. 6, where we determine if each
DJF is a WQBO or EQBO season based on the zonal
winds of the pure QBO Koopman aggregate mode. This is
opposed to defining based on the unfiltered zonal winds of
reanalysis as in the figure in the main text. The two figures
are similar, but not identical, as the pure index flags subtly
different winters in the composite.

FIG. C1. Composites of zonal-mean zonal wind during boreal winter (DJF) of WQBO–EQBO as measured by the
winds of Koopman index composite mode at 50 hPa. (a) Reanalysis}the typical composite shown for the Holton–
Tan effect. (b),(d) Compositions of the pure QBO and QBO–annual cycle interaction modes. (c) The sum of (b) and (d).
In the case of a perfect reconstruction from the Koopman modes, we would expect (c) to be the same as (a); differences
between these panels are on the order of 3 m s21.
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