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10. Homework 10

Exercise 10.1 (4.1.5). Find the equilibrium values of the system

R
dx
dt = xy

2 � x

dy
dt = x sin(@y).

Sol. In order for dx
dt = 0, we require xy

2 � x = 0. Hence, we must have x = 0 or y
2 � 1 = 0, which

implies y = ±1. In order for dy
dt = 0, we require x sin(@y) = 0. Hence, we again require that either x = 0

or sin(@y) = 0, which just tells us that y 6 Z. Combining these pieces of information, we see that both
dx
dt and dy

dt vanish at the points (x, y) = (0, y) with y arbitrary, and (x, y) = (x, 1) with x arbitrary and
(x, y) = (x,�1) with x arbitrary; these are the equilibrium points of the system.

Exercise 10.2 (4.1.9). Consider the system of di↵erential equations

R
dx
dt = ax+ by

dy
dt = cx+ dy.

1. Show that (x, y) = (0, 0) is the only equilibrium point of the above system if ad� bc = 0.

2. Show that the above system has a line of equilibrium points if ad� bc = 0.

Proof. Finding an equilibrium point amounts to solving the system of equations

R
ax+ by = 0

cx+ dy = 0,

which in matrix form can be written as
�
a b

c d

��
x

y

�
=

�
0
0

�
.

If ad � bc = det

�
a b

c d

�
= 0, then

�
a b

c d

�
is invertible and so the above equation only has solution

�
0
0

�
.

Hence, in this situation, (x, y) = (0, 0) is the only equilbrium point.

Otherwise, ad � bc = 0 and the matrix

�
a b

c d

�
is not invertible. In that case, the rank of

�
a b

c d

�
is

no more than 1 and so has at least a one dimensional nullspace. This corresponds to the above system of
equations having at least a line (and possibly all of R2) as its solution, and hence at least a line of equilibrium
points.

Exercise 10.3 (4.2.3). Determine the stability or instability of all solutions of the system of ODEs

d↵x

dt
=

�
�5 3
�1 1

�
↵x.

Sol.As implied by Theorem 1 in §4.2, it su�ces to consider the stability of the trivial solution ↵x = ↵0, which

is determined by the eigenvalues of

�
�5 3
�1 1

�
. These solve

0 = det

��
�5 3
�1 1

�
� ⇡I

�
= det

�
�5� ⇡ 3
�1 1� ⇡

�
= (�5� ⇡)(1� ⇡) + 3 = ⇡

2 + 4⇡� 2,
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and so are given by

⇡ =
�4±

1
16 + 8

2
=

�4± 2
1
6

2
= �2±

1
6.

Since
1
6 > 2, one of the values of ⇡ is positive and we conclude that the solutions of the given system are

unstable.

Exercise 10.4 (4.2.11). Determine whether the solutions x(t) # 0 and x(t) # 1 of the single scalar equation
dx
dt = x(1� x) are stable or unstable.

Sol.We provide a heuristic solution and then give a very explicit argument as well.

Let’s first consider the solution x1(t) # 0. If we perturb this solution slightly in the positive direction (say
by setting x(0) = � > 0), then notice that dx

dt > 0 and the solution moves away from zero. Similarly, if we
perturb this solution slightly in the negative direction (say by setting x(0) = � < 0), then notice that dx

dt < 0
and the solution again moves further away from zero. Hence, the solution is unstable.

Similarly, let us look at x2(t) # 1. If we perturb this solution slightly in the positive direction (say by setting
x(0) = 1 + � > 1), then notice that dx

dt < 0 and the solution moves back towards 1. Similarly, if we perturb
this solution slightly in the negative direction (say by setting x(0) = 1� � < 1), then notice that dx

dt > 0 and
the solution again moves back towards 1. Hence, the solution is stable.

The above argument su�ces, but if we want to directly use the definition of stability then notice that we
can solve this equation analytically since it is separable. Notice that dividing through by x(1�x) away from
x = 0 and x = 1 we have

dx

dt
= x(1� x)

1

x(1� x)

dx

dt
= 1

�
1

x
+

1

1� x

�
dx

dt
= 1

d

dt
(ln |x|� ln |1� x|) = 1

ln

✓✓✓✓
x

1� x

✓✓✓✓ = t+ c

x

1� x
= ke

t
k possibly < 0

x = ke
t � xke

t

x(1 + ke
t) = ke

t

x(t) =
ke

t

1 + ket
.

Suppose x(0) = x0 /6 {0, 1}. Then, x0 + x0k = k and k = x0
1�x0

. This tells us what x(t) looks like away from
x = 0 or x = 1. With this solution form in mind, let us consider initial conditions that are not zero or one.

Let’s look at x1(t) # 0 first. If x0 is such that k > 0, then x(t) p 1 as t p !, and in particular no matter
how small we make x0 (and as such, k), x(t) does not stay close to x1(t); since we only need one solution
that starts close to x1 and does not return to call the equilibrium solution unstable, we conclude that this
solution is unstable.

Next, we consider x2(t) # 1. Let � > 0 be arbitrary and choose  = 2
@ . First, suppose x0 > 1 �  . Then,

k >
1�⇡
⇡ > 0 and we find

|x(t)� x2(t)| = |x(t)� 1| =
✓✓✓✓

ke
t

1 + ket
� 1

✓✓✓✓ =
✓✓✓✓
ke

t � 1� ke
t

1 + ket

✓✓✓✓ =
1

1 + ket
⌘ 1

1 + k
<

1

1 + 1�⇡
⇡

=
1

 
=

�

2
< �.
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Next, suppose x0 < 1 +  . Then, k < 0 and |k| < 1+⇡
⇡ . Furthermore, |k| > 1 because for some ! > 0,

k = 1+!
�! and |k| = 1+!

! > 1. In particular, the denominator of x(t) never approaches zero, and our solution
never blows up. We find then

|x(t)� x2(t)| = |x(t)� 1| =
✓✓✓✓

ke
t

1 + ket
� 1

✓✓✓✓ =
✓✓✓✓
ke

t � 1� ke
t

1 + ket

✓✓✓✓ =
1

|k|et � 1
⌘ 1

|k|� 1
<

1
1+⇡
⇡ � 1

=
1

 
=

�

2
< �.

Thus, if |x0 � 1| <  , |x(t)� x2(t)| < � for all time and the equilibrium solution x2 is stable.

Exercise 10.5 (4.2.13). Consider the di↵erential equation dx
dt = x

2. Show that all solutions x(t) with
x(0) ⇥ 0 are unstable while all solutions x(t) with x(0) < 0 are asymptotically stable.

Proof. First consider a solution x(0) ⇥ 0. A heuristic argument for instability is that for small positive
perturbations away from zero (i.e. y(0) = x(0) + � > 0), dx

dt > 0 and so solutions grow further away from
zero. We can prove this directly by looking at analytic solutions for the equation away from zero. Notice
that for x away from zero, we can write

1

x2

dx

dt
= 1

d

dt

�
� 1

x

�
= 1

� 1

x
= t+ c

x(t) =
�1

t+ c
.

If x(0) = 0 then x(t) # 0 for all t > 0 and if x(0) = x0 = 0, we have

x0 =
�1

c
=⇡ x(t) =

�1

t� 1
x0

=
1

1
x0

� t
.

Suppose that x0 ⇥ 0. Let y(0) = x0 +  > 0 for  > 0 arbitrarily small. Then, as t p 1
x0+⇡ , y(t) � !.

However, x

◆
1

x0+⇡

⇣
< ! since x(t) does not blow up until t = 1

x0
(or never, in the case x0 = 0). In

particular, as t p 1
x0+⇡ , |x(y)� y(t)| p ! and so solutions will not stay close to x(t) no matter how small

the perturbation is. It follows that solutions x(t) with x(0) ⇥ 0 are unstable.

Let us now consider solution x(t) with x(0) = x0 < 0. Then, by the above we can write

x(t) =
1

1
x0

� t
=

1

t+ 1
|x0|

.

Suppose |y(0)� x0| < |x0|
2 , so that in particular y(0) < 0 and |y(0)| > |x0|

2 . Then

y(t) =
1

t+ 1
|y(0)|

and

|x(t)� y(t)| =

✓✓✓✓✓
1

t+ 1
|y(0)|

� 1

t+ 1
|x0|

✓✓✓✓✓

=

✓✓✓✓✓✓

t+ 1
|x0| � t� 1

|y(0)|◆
t+ 1

|y(0)|

⇣◆
t+ 1

|x0|

⇣

✓✓✓✓✓✓

⌘ |y(0)� x0|
|y(0)||x0|

1

t2
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⌘ |x0|
2 |x0|

2 |x0|
1

t2

=
1

|x0|
1

t2
p 0.

so that |x(t) � y(t)| p 0 as t p ! and y(t) ultimately returns to x(t). In particular, the solution x(t) is
asymptotically stable.

Exercise 10.6 (4.3.3). Find all equilibrium solutions of
R

dx
dt = x

2 + y
2 � 1

dy
dt = 2xy

and determine, if possible, whether they are stable or unstable.

Sol. First, observe that we can write the system as d
dt↵x = F(↵x), with ↵x = (x, y) and

F(↵x) =

�
f1(x, y)
f2(x, y)

�
=

�
x
2 + y

2 � 1
2xy

�
.

Notice that dy
dt = 0 if and only if at least one of x or y is zero, and that dx

dt = 0 if and only if x2 + y
2 = 1.

Thus, the four points (0, 1), (0,�1), (1, 0) and (�1, 0) are the four equilibrium points of this system.

Let us first expand the system about (0, 1), and let ↵x = (x, y), ↵z = ↵x�(0, 1). Using a Taylor series expansion,
we have that

d

dt
↵z =

d

dt
↵x = F

�
0
1

�
+

⌘
~f1
~x

~f1
~y

~f2
~x

~f2
~y

Z
✓✓
(0,1)

↵z + g(↵z)

=

�
2x 2y
2y 2x

� ✓✓
(0,1)

↵z + g(↵z)

=

�
0 2
2 0

�
↵z + g(↵z)

with |g(z)|
|z| p 0 as |z| p 0. Notice that the eigenvalues of

�
0 2
2 0

�
are solutions of

0 = det

��
0 2
2 0

�
� ⇡I

�
= det

�
�⇡ 2
2 �⇡

�
= ⇡

2 � 4 = (⇡� 2)(⇡+ 2),

or ⇡ = ±2. Since one of the eigenvalues of A is positive, we conclude by Theorem 2 in §4.3 that this
equilibrium solution is unstable.

Similarly, we consider (0,�1). We let ↵x = (x, y), ↵z = ↵x� (0,�1). Using a Taylor series expansion, we have
that

d

dt
↵z =

d

dt
↵x = F

�
0
�1

�
+

⌘
~f1
~x

~f1
~y

~f2
~x

~f2
~y

Z
✓✓
(0,�1)

↵z + g(↵z)

=

�
2x 2y
2y 2x

� ✓✓
(0,�1)

↵z + g(↵z)

=

�
0 �2
�2 0

�
↵z + g(↵z).

with |g(z)|
|z| p 0 as |z| p 0. Notice that the eigenvalues of

�
0 �2
�2 0

�
are solutions of

0 = det

��
0 �2
�2 0

�
� ⇡I

�
= det

�
�⇡ �2
�2 �⇡

�
= ⇡

2 � 4 = (⇡� 2)(⇡+ 2),
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or ⇡ = ±2. Since one of the eigenvalues of A is again positive, we conclude by Theorem 2 in §4.3 that this
equilibrium solution is unstable.

Next, we consider (1, 0). We let ↵x = (x, y), ↵z = ↵x� (1, 0). Using a Taylor series expansion, we have that

d

dt
↵z =

d

dt
↵x = F

�
1
0

�
+

⌘
~f1
~x

~f1
~y

~f2
~x

~f2
~y

Z
✓✓
(1,0)

↵z + g(↵z)

=

�
2x 2y
2y 2x

� ✓✓
(1,0)

↵z + g(↵z)

=

�
2 0
0 2

�
↵z + g(↵z).

with |g(z)|
|z| p 0 as |z| p 0. Notice that the eigenvalues of

�
2 0
0 2

�
are solutions of

0 = det

��
2 0
0 2

�
� ⇡I

�
= det

�
2� ⇡ 0
0 2� ⇡

�
= (2� ⇡)2,

or ⇡ = 2. Since one of the eigenvalues of A is again positive, we conclude by Theorem 2 in §4.3 that this
equilibrium solution is unstable.

Finally, we consider (�1, 0). We let ↵x = (x, y), ↵z = ↵x � (�1, 0). Using a Taylor series expansion, we have
that

d

dt
↵z =

d

dt
↵x = F

�
�1
0

�
+

⌘
~f1
~x

~f1
~y

~f2
~x

~f2
~y

Z
✓✓
(�1,0)

↵z + g(↵z)

=

�
2x 2y
2y 2x

� ✓✓
(�1,0)

↵z + g(↵z)

=

�
�2 0
0 �2

�
↵z + g(↵z).

with |g(z)|
|z| p 0 as |z| p 0. Notice that the eigenvalues of

�
�2 0
0 �2

�
are solutions of

0 = det

��
�2 0
0 �2

�
� ⇡I

�
= det

�
�2� ⇡ 0

0 �2� ⇡

�
= (2 + ⇡)2,

or ⇡ = �2. Since both of the eigenvalues of A are negative, we conclude by Theorem 2 in §4.3 that this
equilibrium solution is in fact stable.

Exercise 10.7 (4.3.9). Verify that the origin is an equilibrium point of

R
dx
dt = e

x+y � 1
dy
dt = sin(x+ y)

and determine, if possible, if it is stable or unstable.

Sol.We first observe that at (0, 0), we have dx
dt = e

0 � 1 = 1 � 1 = 0 and dy
dt = sin(0 + 0) = 0 so that the

origin is indeed an equilibrium point. To determine whether or not it is stable or unstable, we notice that
this equation is of the form d

dt↵x = F(↵x) with ↵x = (x, y) and

F(↵x) =

�
f1(x, y)
f2(x, y)

�
=

�
e
x+y � 1

sin(x+ y)

�
.
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Taylor expanding the solution about (0, 0), we have with ↵z = ↵x� (0, 0) that

d

dt
↵z =

d

dt
↵x = F

�
0
0

�
+

⌘
~f1
~x

~f1
~y

~f2
~x

~f2
~y

Z
✓✓
(0,0)

↵z + g(↵z)

=

�
e
x+y

e
x+y

cos(x+ y) cos(x+ y)

� ✓✓
(0,0)

↵z + g(↵z)

=

�
1 1
1 1

�
↵z + g(↵z).

with |g(z)|
|z| p 0 as |z| p 0. Notice that the eigenvalues of

�
1 1
1 1

�
are solutions of

0 = det

��
1 1
1 1

�
� ⇡I

�
= det

�
1� ⇡ 1
1 1� ⇡

�
= (1� ⇡)2 � 1 = �2⇡+ ⇡

2 = ⇡(⇡� 2),

i.e. ⇡ = 0 or ⇡ = 2. Since one of the eigenvalues is positive, we conclude by Theorem 2 in §4.3 that this
equilibrium is unstable.

Exercise 10.8 (4.3.11). Verify that the origin is an equilibrium point of

R
dx
dt = cos y � sinx� 1
dy
dt = x� y � y

2

and determine, if possible, if it is stable or unstable.

Sol.We first observe that at (0, 0), we have dx
dt = cos(0)� sin(0)� 1 = 1� 0� 1 = 0 and dy

dt = 0� 0� 02 = 0
so that the origin is indeed an equilibrium point. To determine whether or not it is stable or unstable, we
notice that this equation is of the form d

dt↵x = F(↵x) with ↵x = (x, y) and

F(↵x) =

�
f1(x, y)
f2(x, y)

�
=

�
cos y � sinx� 1

x� y � y
2

�
.

Taylor expanding the solution about (0, 0), we have with ↵z = ↵x� (0, 0) that

d

dt
↵z =

d

dt
↵x = F

�
0
0

�
+

⌘
~f1
~x

~f1
~y

~f2
~x

~f2
~y

Z
✓✓
(0,0)

↵z + g(↵z)

=

�
� cosx � sin y

1 �1� 2y

� ✓✓
(0,0)

↵z + g(↵z)

=

�
�1 0
1 �1

�
↵z + g(↵z).

with |g(z)|
|z| p 0 as |z| p 0. Notice that the eigenvalues of

�
�1 0
1 �1

�
are solutions of

0 = det

��
�1 0
1 �1

�
� ⇡I

�
= det

�
�1� ⇡ 0

1 �1� ⇡

�
= (1 + ⇡)2,

with solution ⇡ = �1. Since all eigenvalues are all negative, we conclude by Theorem 2 in §4.3 that the
equilibrium point is stable.
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11. Homework 11

Exercise 11.1 (4.4.1). Verify that R
x(t) = 1 + t

y(t) = cos(t2)

is a solution of R
ẋ = 1

ẏ = 2(1� x) sin(1� x)2

and find its orbit.

Sol.We first observe that
dx

dt
= 1

and
dy

dt
= �2t sin(t2) = �2(x� 1) sin(x� 1)) = 2(1� x) sin(1� x)2

with t = x � 1. It’s orbit is simply the trajectory traced out by the corresponding curve �(x, y) = 0
parametrized by x(t) and y(t), which can be found by substituting t = x� 1:

y(x) = cos(x� 1)2.

Exercise 11.2 (4.4.5). Find the orbits of R
ẋ = y

ẏ = �x.

Sol.Notice first that the only equilibrium point ẋ = ẏ = 0 is given by

�
x

y

�
=

�
0
0

�
. Away from this

equilibrium, trajectories satisfy the first order di↵erential equation

dy

dx
=

ẏ

ẋ
=

�x

y
.

This equation is separable, and we can solve

y
dy

dx
= �x

d

dx

�
1

2
y
2

�
= �x

1

2
y
2 = �1

2
x
2 + c

x
2 + y

2 = c.

So, we see that the trajectories are the equilibrium point

�
x

y

�
=

�
0
0

�
and the circles x2 + y

2 = c.

Exercise 11.3 (4.4.13). Find the orbits of

R
ẋ = 2xy

ẏ = x
2 � y

2
.

Page 66 of 70



Recitation Work MATH-UA.0262: Ordinary Di↵erential Equations Luke Peilen

Sol.We first find the equilibrium points, which satisfy ẋ = ẏ = 0. So, 2xy = 0 which implies that x or y

is zero, which coupled with x
2 � y

2 = 0 forces both x and y to be zero. Outside of the equilibrium point�
x

y

�
=

�
0
0

�
, trajectories satisfy the first order di↵erential equation

dy

dx
=

ẏ

ẋ
=

x
2 � y

2

2xy
.

We can rewrite this equation as

(y2 � x
2) + 2xy

dy

dx
= 0,

which is exact since ~
~y

p
y
2 � x

2
(
= 2y = ~

~x (2xy). Integrating 2xy with respect to y, we find that the

solution �(x, y) = c has to satisfy

�(x, y) =

�
2xy dy = xy

2 + k(x)

for some k(x). Di↵erentiating with respect to x,

y
2 � x

2 =
��

�x
= y

2 + k
p(x),

so k
p(x) = �x

2 and k(x) = � 1
3x

3 + c. Thus, the trajectories are given by the equilibrium point

�
x

y

�
=

�
0
0

�

and the curves xy2 � 1
3x

3 = c.

Exercise 11.4 (4.7.1). Draw the phase portrait of

d↵x

dt
=

�
�5 1
1 �5

�
↵x.

Sol.We use the eigenmethod, and find the eigenvalues and eigenvectors of the matrix A =

�
�5 1
1 �5

�
. The

eigenvalues ⇡ must satisfy

0 = det(A� ⇡I) =

✓✓✓✓
�5� ⇡ 1

1 �5� ⇡

✓✓✓✓ = (5 + ⇡)2 � 1 = ⇡
2 + 10⇡+ 24 = (⇡+ 4)(⇡+ 6),

and so the eigenvalues are ⇡1 = �4 and ⇡2 = �6.

Now, for ⇡1 = �4 our eigenvector ↵v1 must satisfy (A+ 4I)↵v1 = ↵0. Row reducing, we have
�
�1 1 0
1 �1 0

�
p

�
1 �1 0
0 0 0

�
,

so any eigenvector is a multiple of ↵v1 =

�
1
1

�
.

For ⇡2 = �6, our eigenvector ↵v2 must satisfy (A+ 6I)↵v2 = ↵0. Row reducing, we have
�
1 1 0
1 1 0

�
p

�
1 1 0
0 0 0

�
,

so any eigenvector is a multiple of ↵v2 =

�
1
�1

�
.

It follows that the general solution is ↵x(t) = c1e
�4t

�
1
1

�
+ c2e

�6t

�
1
�1

�
. Solutions with c1 = 0 converge

asymptotically to the equilibrium point

�
0
0

�
along the vector

�
1
�1

�
, but otherwise solutions converge
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asymptotically to equilibrium approaching the vector

�
1
1

�
since �4 > �6. The phase diagram is given in

Figure 1 in the handwritten notes at the end of this document.

Exercise 11.5 (4.7.5). Draw the phase portrait of

d↵x

dt
=

�
1 �4
�8 4

�
↵x.

Sol.We use the eigenmethod, and find the eigenvalues and eigenvectors of the matrix A =

�
1 �4
�8 4

�
. The

eigenvalues ⇡ must satisfy

0 = det(A� ⇡I) =

✓✓✓✓
1� ⇡ �4
�8 4� ⇡

✓✓✓✓ = (1� ⇡)(4� ⇡)� 32 = ⇡
2 � 5⇡� 28,

and so the eigenvalues are ⇡1 = 5+
0
137

2 and ⇡2 = 5�
0
137

2 .

Now, for ⇡1 = 5+
0
137

2 our eigenvector ↵v1 must satisfy (A� ⇡1I)↵v1 = ↵0. Row reducing, we have

⌘
�3�

0
137

2 �4 0

�8 3�
0
137

2 0

Z
p

�
3+

0
137

8 1 0
0 0 0

�
,

so any eigenvector is a multiple of ↵v1 =

�
1

�3�
0
137

8

�
.

For ⇡2 = 5�
0
137

2 , our eigenvector ↵v2 must satisfy (A� ⇡2I)↵v2 = ↵0. Row reducing, we have

⌘
�3+

0
137

2 �4 0

�8 3+
0
137

2 0

Z
p

�
3�

0
137

8 1 0
0 0 0

�
,

so any eigenvector is a multiple of ↵v2 =

�
1

�3+
0
137

8

�
.

It follows that the general solution is ↵x(t) = c1e
�1t↵v1 + c2e

�2t↵v2. Observe that ⇡1 > 0 > ⇡2. Solutions with

c1 = 0 converge asymptotically to the equilibrium point

�
0
0

�
along the vector ↵v2, but otherwise solutions

diverge from equilibrium approaching the vector ↵v1 since ⇡1 > 0. The phase diagram is given in Figure 2 in
the handwritten notes at the end of this document.

Exercise 11.6 (4.7.11). The equation of motion of a spring-mass system with damping (see Section 2.6) is
mz̈ + cż + kz = 0, where m, c, and k are positive numbers. Convert this equation to a system of first-order
equations for x = z, y = ż, and draw the phase portrait of this system. Distinguish the overdamped, critically
damped, and underdamped cases.

Sol.Observe that with x = z and y = ż, we have the system of equations

d↵x

dt
=

�
ẋ

ẏ

�
=

�
ż

z̈

�
=

�
y

� k
mx� c

my

�
=

�
0 1

� k
m � c

m

�
↵x.

To determine the phase portrait of this system, we need to characterize the eigenvalues which govern the
solutions. These solve the characteristic equation

0 = det

��
0 1

� k
m � c

m

�
� ⇡I

�
=

✓✓✓✓
�⇡ 1
� k

m � c
m � ⇡

✓✓✓✓ = ⇡

◆
⇡+

c

m

⇣
+

k

m
= ⇡

2 +
c

m
⇡+

k

m
,

Page 68 of 70



Recitation Work MATH-UA.0262: Ordinary Di↵erential Equations Luke Peilen

whose solutions m⇡
2 + c⇡+ k = 0 satisfy ⇡ = �c±

0
c2�4km
2m . We distinguish three cases.

Case 1: c2 � 4km > 0, or overdamped motion.

In this case, observe that both eigenvalues ⇡ are real. Furthermore, c2 � 4km < c
2 since k,m, c > 0, so1

c2 � 4km < c and both eigenvalues are negative. Hence, we have asymptotic convergence to equilibrium�
0
0

�
along the corresponding eigenvectors, as in Figure 3a of the handwritten notes at the end of this

document.

Case 2: c2 � 4km = 0, or critically damped motion.

Notice that we have a double root ⇡ = �c
2m . We are only able to find a single linearly independent eigenvector

though, since row reduction yields solutions to

��
0 1

� k
m � c

m

�
� ⇡I

�
↵v = ↵0 satisfying

�
c

2m 1 0
� k

m � c
2m 0

�
p

�
1 2m

c 0
0 0 0

�
.

The components a and b of ↵v must solve a + 2m
c b = 0, which means that we only have one free parameter

to determine the eigenvalue and hence a one dimensional eigenspace. Let’s call the eigenvector ↵v; then, we

must look for a linearly independent generalized eigenvector ↵u satisfying

��
0 1

� k
m � c

m

�
� ⇡I

�2

↵u = ↵0, and

our general solution is of the form ↵x(t) = c1e
�t
↵v + c2e

�t

�
↵u+

��
0 1

� k
m � c

m

�
� ⇡I

�
t↵u

�
. Since we are only

in two dimensions and

��
0 1

� k
m � c

m

�
� ⇡I

�
↵u is linearly independent from ↵u, it must be some constant k

times ↵v, i.e. k↵v. Thus, we can write

↵x(t) = c1e
�t
↵v + c2e

�t(↵u+ kt↵v) = (c1 + c2kt)e
�t
↵v + c2e

�t
↵u.

Notice that since c2kt asymptotically dominates c2, even in the c1 = 0 case we find asymptotic convergence

to the equilibrium point

�
0
0

�
along ↵v as in Figure 3b of the handwritten notes at the end of this document.

Case 3: c2 � 4km < 0, or underdamped motion.

Notice that we have two complex eigenvalues with negative imaginary part, so trajectories spiral towards

the equilibrium point

�
0
0

�
. Furthermore, notice that at

�
x

y

�
=

�
0
y

�
for positive y, dx

dt = y > 0, and so the

spirals move clockwise as in Figure 3c of the handwritten notes at the end of this document.

Exercise 11.7 (4.7.13). In this problem, we consider the system

R
ẋ = y

ẏ = x+ 2x3
.

1. Show that the equilibrium solution x = 0, y = 0 of the linearized system is a saddle, and draw the phase
portrait of the linearized system.

2. Find the orbits of the given system, and draw its phase portrait.

3. Show that there are exactly two orbits of the the nonlinear system (one for x > 0 and one for x < 0)
on which x p 0, y p 0 as t p !. Similarly, there are exactly two orbits of the nonlinear system
on which x p 0, y p 0 as t p �!. Thus, observe that the phase portraits for the nonlinear and
linearized systems look the same near the origin.

Page 69 of 70



Recitation Work MATH-UA.0262: Ordinary Di↵erential Equations Luke Peilen

Sol.We first determine the linearized system about

�
x

y

�
=

�
0
0

�
, which is given by

d↵z

dt
=

⌘
~
~x (y)

~
~y (y)

~
~x (x+ 2x3) ~

~y (x+ 2x3)

Z
✓✓
(0,0)

↵z =

�
0 1
1 0

�
↵z.

To determine the phase portrait of this system, we consider the eigenvalues and eigenvectors of the matrix

A =

�
0 1
1 0

�
. The eigenvalues solve

0 = det(A� ⇡I) =

✓✓✓✓
�⇡ 1
1 �⇡

✓✓✓✓ = ⇡
2 � 1,

or ⇡ = ±1. Since ⇡1 = 1 > 0 > �1 = ⇡2, the equilibrium solution is a saddle. To draw the phase portrait,
we determine the associated eigenvectors. For ⇡1 = 1, we need (A � I)↵v1 = ↵0 and so by row reduction we
see that �

�1 1 0
1 �1 0

�
p

�
1 �1 0
0 0 0

�

so that any eigenvector is a multiple of ↵v1 =

�
1
1

�
. For ⇡2 = �1, we need (A + I)↵v2 = ↵0 and so by row

reduction we see that �
1 1 0
1 1 0

�
p

�
1 1 0
0 0 0

�

so that any eigenvector is a multiple of ↵v2 =

�
1
�1

�
.

It follows that the general solution is given by ↵z(t) = c1e
t

�
1
1

�
+ c2e

�t

�
1
�1

�
. Solutions with c1 = 0

converge asymptotically to the equilibrium solution

�
0
0

�
along the vector

�
1
�1

�
, and otherwise diverge

from equilibrium approaching the vector

�
1
1

�
. The associated phase portrait is given in Figure 4a of the

handwritten notes at the end of this document.

For the nonlinear system, away from the equilibrium point

�
x

y

�
=

�
0
0

�
trajectories satisfy the first order

ODE
dy

dx
=

ẏ

ẋ
=

x+ 2x3

y
.

This equation is separable, and has solutions

y
dy

dx
= x+ 2x3

d

dx

�
1

2
y
2

�
= x+ 2x3

1

2
y
2 =

1

2
x
2 +

1

2
x
4 + c,

so trajectories satisfy y
2 = x

2 + x
4 + c or

�
x

y

�
=

�
0
0

�
. The phase portrait is given in Figure 4b of the

handwritten notes at the end of this document, as is the identification of the requested orbits that converge
to equilibrium as t p ! and t p �!.
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Figure 4 (4.7.13 )
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Notice that for ×, y -10, we need c-0 (otherwise, 111,11 is
bounded away from too )

.
Hence

,
we have the four

branches of sit ✗" = y ? Cay) =/(0,0) :



The arrows from
the above diagram are
as we move forward

> -1
in time

,
t-1N.

Thus
,

1- 1- {y=FÉ, ✗so}
& { y -5×5×4 ,

x > o}

converge to (8) as t -100 .

As ta -oo
,
we reverse the arrows ( s= - t

, ¥ = ¥
. # = -8¥;

similarly for %-)
.

Thus
,
as t→ - no

,
the orbits near (8) look

like :

so
,

{y=Ex4 ,
✗ so }

r (

t { y= - FE ,
✗ so }

^ >
converge to (8) as c-→ - N

.

Furthermore
, for small ( Xy ), ✗

"
cc✗

2
and so y

'
un X2

,
or

ya IX. In particular, the orbits of the nonlinear problem look
like the lines we saw in the linearized orbits near our

equilibrium point !!


