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8. Homework 8

Exercise 8.1 (3.1.1). Convert the di↵erential equation

d
3
y

dt3
+

R
dy

dt

�2

= 0

into a system of first-order equations.

Sol. Set x1 = y, x2 = y
�, and x3 = y

��. Then, we observe from the above equation that

dx1

dt
= y

� = x2

dx2

dt
= y

�� = x3

dx3

dt
= y

��� = �(y�)2 = �x
2
2,

which is a system of first-order equations.

Exercise 8.2 (3.1.5). 1. Let y(t) be a solution of the equation y
�� + y

� + y = 0. Show that

@x(t) =

R
y(t)
y
�(t)

�

is a solution of the system of equations

d@x

dt
=

R
0 1
�1 �1

�
@x.

2. Let

@x(t) =

R
x1(t)
x2(t)

�

be a solution of the system of equations

d@x

dt
=

R
0 1
�1 �1

�
@x.

Show that y = x1(t) is a solution of the equation y
�� + y

� + y = 0.

Proof. Let us consider the first point first. Notice that with x1 = y, x2 = y
�,

dx1

dt
= y

� = x2

dx2

dt
= y

�� = �y � y
� = �x1 � x2.

In matrix form, this system is exactly
d@x

dt
=

R
0 1
�1 �1

�
@x,

as desired.

For the second point, suppose

@x(t) =

R
x1(t)
x2(t)

�

is a solution of
d@x

dt
=

R
0 1
�1 �1

�
@x.
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and set y = x1. Then, we observe that x2 = dx1
dt = y

� and

dx2

dt
= y

�� = �x1 � x2 = �y � y
�
,

so that y�� + y
� + y = 0. Hence, y = x1(t) solves the desired equation.

Exercise 8.3 (3.1.7). Write the system of di↵erential equations and initial values

�
dx1
dt = 5x1 + 5x2, x1(3) = 0
dx2
dt = �x1 + 7x2, x2(3) = 6

in the form d@x
dt = A@x, @x(t0) = @x0.

Sol.We immediately observe that we have

d@x

dt
=

R
dx1
dt
dx2
dt

�
=

R
5 5
�1 7

�R
x1

x2

�
=

R
5 5
�1 7

�
@x

and that our initial condition takes the form

@x(3) =

R
x1(3)
x2(3)

�
=

R
0
6

�
.

Exercise 8.4 (3.8.1). Find all solutions of the system

d@x

dt
=

R
6 �3
2 1

�
@x.

Sol.We use the eigenmethod, searching for solutions @x(t) = e
⇡t
@v for eigenvalues ↵ of the matrix A and

associated eigenvector @v. Observe that the characteristic equation is of the form

0 = det(A� ↵I) =

✓✓✓✓
6� ↵ �3
2 1� ↵

✓✓✓✓ = (6� ↵)(1� ↵) + 6 = ↵
2 � 7↵+ 12 = (↵� 4)(↵� 3),

with eigenvalue solutions ↵ = 4 and ↵ = 3. It remains to determine the associated linearly independent
eigenvectors.

First, we examine ↵ = 4. This requires us to solve
R
6 �3
2 1

�R
v1

v2

�
=

R
6v1 � 3v2
2v1 + v2

�
=

R
4v1
4v2

�
.

The second equation can be written 2v1 = 3v2, or v2 = (2/3)v1. Sure enough, the first equation takes the

same form. Hence, v1 is free to choose; we pick v1 = 3, so v2 = 2 and our eigenvector is

R
3
2

�
.

Next, we examine ↵ = 3. This requires us to solve
R
6 �3
2 1

�R
v1

v2

�
=

R
6v1 � 3v2
2v1 + v2

�
=

R
3v1
3v2

�
.

The second equation gives 2v1 = 2v2, or v1 = v2. Sure enough, the first equation takes the same form.

Hence, v1 is free to choose; we pick v1 = 1, so v2 = 1 and our eigenvector is

R
1
1

�
. Thus, our general solution

is

@x = c1e
3t

R
1
1

�
+ c2e

4t

R
3
2

�
.
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Exercise 8.5 (3.8.11). Solve the initial-value problem

d@x

dt
=

◆

⇣
1 �3 2
0 �1 0
0 �1 �2

⌘

Z @x, @x(0) =

◆

⇣
�2
0
3

⌘

Z .

Sol.We use the eigenmethod, searching for solutions @x(t) = e
⇡t
@v for eigenvalues ↵ of the matrix A and

associated eigenvector @v. Observe that the characteristic equation is of the form

0 = det(A� ↵I) =

✓✓✓✓✓✓

1� ↵ �3 2
0 �1� ↵ 0
0 �1 �2� ↵

✓✓✓✓✓✓
= (1� ↵)(�1� ↵)(�2� ↵),

with solutions ↵ = 1, ↵ = �1, and ↵ = �2. We could find all of the solutions, but instead we notice a special
similarity between the eigenvector for ↵ = �2 and the initial conditions. Namely, if we start trying to find
an eigenvector for ↵ = �2, we observe

@0 = (A+ 2I)@v =

◆

⇣
3 �3 2
0 1 0
0 �1 0

⌘

Z

◆

⇣
v1

v2

v3

⌘

Z =

◆

⇣
3v1 � 3v2 + 2v3

v2

�v2

⌘

Z =

◆

⇣
0
0
0

⌘

Z .

In particular, v2 = 0 and 3v1 = �2v3, or v1 = (�2/3)v3. Notice then that v3 is free to choose, so we might

as well set v3 = 3 and find that

◆

⇣
�2
0
3

⌘

Z = @x(0) is an eigenvector for ↵ = �2! Hence, if we were to write out

a general solution

@x(t) = c1e
t
@v1 + c2e

pt
@v2 + c3e

p2t

◆

⇣
�2
0
3

⌘

Z

with eigenvector @v1 for ↵ = 1 and @v2 for ↵ = �1, we would find by setting t = 0 that

@x(0) = c1@v1 + c2@v2 + c3

◆

⇣
�2
0
3

⌘

Z =

◆

⇣
�2
0
3

⌘

Z ,

so c1 = c2 = 0 and c3 = 1. Hence, we needn’t bother finding other eigenvectors and can see immediately
that the solution to this initial value problem is

@x(t) = e
p2t

◆

⇣
�2
0
3

⌘

Z .

Exercise 8.6 (3.9.1). Find the general solution of the system

d@x

dt
=

R
�3 2
�1 �1

�
@x.

Sol.We use the eigenmethod, searching for solutions @x(t) = e
⇡t
@v for eigenvalues ↵ of the matrix A and

associated eigenvector @v. Observe that the characteristic equation is of the form

0 = det(A� ↵I) =

✓✓✓✓
�3� ↵ 2
�1 �1� ↵

✓✓✓✓ = (3 + ↵)(1 + ↵) + 2 = ↵
2 + 4↵+ 5,

with solutions ↵ = p4±
0
p4

2 = �2± i. These are complex eigenvalues, so we will choose one and find the real
and imaginary parts of e⇡t@v. Choosing ↵ = �2 + i, we seek a vector @v satisfying

R
�3 2
�1 �1

�R
v1

v2

�
=

R
�3v1 + 2v2
�v1 � v2

�
=

R
(�2 + i)v1
(�2 + i)v2

�
.
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The second equation yields v1 = (1 � i)v2. Similarly, the first equation gives �3v1 + 2v2 = �2v1 + iv1 or

(1+ i)v1 = 2v2. In particular, v1 = 2
1+iv2 = 2(1pi)

1+1 v2 = (1� i)v2, which is the same equation we had. Hence,

v2 is free to choose. Choosing v2 = 1, our eigenvector is @v =

R
1� i

1

�
, and we see that

e
⇡t
@v = e

(p2+i)t

R
1� i

1

�

= e
p2t(cos(t) + i sin(t))

R
1� i

1

�

= e
p2t

R
cos(t)� i cos(t) + i sin(t) + sin(t)

cos(t) + i sin(t)

�
.

Taking real and imaginary parts, we find that our general solution is of the form

@x(t) = e
p2t

R
c1

R
cos(t) + sin(t)

cos(t)

�
+ c2

R
sin(t)� cos(t)

sin(t)

��
.

Exercise 8.7 (3.9.7). Solve the initial value problem

d@x

dt
=

◆

⇣
�3 0 2
1 �1 0
�2 �1 0

⌘

Z @x, @x(0) =

◆

⇣
0
�1
�2

⌘

Z .

Sol. This is...messy. But at least the ideas are straightforward. We again use the eigenmethod, searching
for solutions @x(t) = e

⇡t
@v for eigenvalues ↵ of the matrix A and associated eigenvector @v. Observe that the

characteristic equation is of the form

0 = det(A� ↵I) =

✓✓✓✓✓✓

�3� ↵ 0 2
1 �1� ↵ 0
�2 �1 �↵

✓✓✓✓✓✓

= (�3� ↵)(�↵(�1� ↵)) + 2(�1 + 2(�1� ↵))

= �↵(↵2 + 4↵+ 3)� 6� 4↵

= �↵
3 � 4↵2 � 7↵� 6

= �(↵+ 2)(↵2 + 2↵+ 3)

with solutions ↵ = �2 and ↵ = p2±
0
p8

2 = �1± i
6
2.

We first find an eigenvector for ↵ = �2. In order to do this, we solve

0 = (A� ↵I)@v =

◆

⇣
�1 0 2
1 1 0
�2 �1 2

⌘

Z

◆

⇣
v1

v2

v3

⌘

Z =

◆

⇣
�v1 + 2v3
v1 + v2

�2v1 � v2 + 2v3

⌘

Z =

◆

⇣
0
0
0

⌘

Z .

We observe that v1 = �v2 and v3 = 1
2v1. The third equation vanishes with these substitutions, so v2 is free

to choose Choosing v2 = �2 yields the eigenvector @v =

◆

⇣
2
�2
1

⌘

Z.

Next we consider the complex eigenvalues. We will choose one and find the real and imaginary parts of e⇡t@v.
Choosing ↵ = �1 + i

6
2, we see that we need to solve

◆

⇣
�3 0 2
1 �1 0
�2 �1 0

⌘

Z

◆

⇣
v1

v2

v3

⌘

Z =

◆

⇣
�3v1 + 2v3
v1 � v2

�2v1 � v2

⌘

Z =

◆

⇣
(�1 + i

6
2)v1

(�1 + i
6
2)v2

(�1 + i
6
2)v3

⌘

Z
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The second equation yields v1 = i
6
2v2. Then, 2v3 = (2 + i

6
2)v1 = (2 + i

6
2)(i

6
2)v2 = (�2 + 2i

6
2)v2, so

v3 = (�1 + i
6
2)v2. With these substitutions the third equation vanishes, so v2 is free to choose, Choosing

v2 = 1, we obtain the eigenvector @v =

◆

⇣
i
6
2

1
�1 + i

6
2

⌘

Z. Hence,

e
⇡t
@v = e

(p1+i
0
2)t

◆

⇣
i
6
2

1
�1 + i

6
2

⌘

Z

= e
pt(cos(

6
2t) + i sin(

6
2t))

◆

⇣
i
6
2

1
�1 + i

6
2

⌘

Z

= e
pt

◆

⇣
�
6
2 sin(

6
2t) + i

6
2 cos(

6
2t)

cos(
6
2t) + i sin(

6
2t)

� cos(
6
2t)�

6
2 sin(

6
2t)� i sin(

6
2t) + i

6
2 cos(

6
2t)

⌘

Z .

Taking real and imaginary parts, it follows that the general solution is given by

@x(t) = c1e
p2t

◆

⇣
2
�2
1

⌘

Z+ e
pt

◆

⇣c2

◆

⇣
�
6
2 sin(

6
2t)

cos(
6
2t)

� cos(
6
2t)�

6
2 sin(

6
2t)

⌘

Z+ c3

◆

⇣

6
2 cos(

6
2t)

sin(
6
2t)

� sin(
6
2t) +

6
2 cos(

6
2t)

⌘

Z

⌘

Z .

Setting t = 0, ◆

⇣
0
�1
�2

⌘

Z = @x(0) = c1

◆

⇣
2
�2
1

⌘

Z+

◆

⇣c2

◆

⇣
0
1
�1

⌘

Z+ c3

◆

⇣

6
2
06
2

⌘

Z

⌘

Z .

So, we have 2c1 +
6
2c3 = 0, �2c1 + c2 = �1 and c1 � c2 +

6
2c3 = �2. We see that

6
2c3 = �2c1 and

�c2 = 1� 2c1, so the third equation yields c1 =. By back substitution, we find c2 = 1 and c3 = �
6
2 so

@x(t) = e
p2t

◆

⇣
2
�2
1

⌘

Z+ e
pt

◆

⇣

◆

⇣
�
6
2 sin(

6
2t)

cos(
6
2t)

� cos(
6
2t)�

6
2 sin(

6
2t)

⌘

Z�
6
2

◆

⇣

6
2 cos(

6
2t)

sin(
6
2t)

� sin(
6
2t) +

6
2 cos(

6
2t)

⌘

Z

⌘

Z

= e
p2t

◆

⇣
2
�2
1

⌘

Z+ e
pt

◆

⇣
�2 cos(

6
2t)�

6
2 sin(

6
2t)

cos(
6
2t)�

6
2 sin(

6
2t)

�3 cos(
6
2t)

⌘

Z .

Exercise 8.8 (3.9.9). Determine all vectors @x0 such that the solution of the initial-value problem

d@x

dt
=

◆

⇣
1 0 �2
0 1 0
1 �1 �1

⌘

Z @x, @x(0) = @x0

is a periodic function of time.

Sol.Via the eigenmethod, periodic contributions to the solution only come from complex eigenvalues; the
rest yield either exponential growth or decay. Thus, we want initial conditions that are in the span of the
eigenvectors we obtain from the complex eigenvalues. So, we determine the eigenvalues! These solve the
characteristic equation

0 = det(A�↵I) =

✓✓✓✓✓✓

1� ↵ 0 �2
0 1� ↵ 0
1 �1 �1� ↵

✓✓✓✓✓✓
= (1�↵)(1�↵)(�1�↵)+2(1�↵) = (1�↵)(↵2�1+2) = (1�↵)(↵2+1),

which has solutions ↵ = 1 and ↵ = ±i. Since we only care about the span of eigenvectors coming from the
complex eigenvalues, we won’t compute the eigenvectors associated to ↵ = 1 and just refer to them as c1@v1.
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For the complex eigenvalues, we choose ↵ = i and will compute the real and imaginary parts of e⇡t@v, for
associated eigenvector @v. This vector solves

◆

⇣
1 0 �2
0 1 0
1 �1 �1

⌘

Z

◆

⇣
v1

v2

v3

⌘

Z =

◆

⇣
v1 � 2v3

v2

v1 � v2 � v3

⌘

Z =

◆

⇣
iv1

iv2

iv3

⌘

Z .

It follows that v2 = 0 and v1 = (1 + i)v3. With these substitutions, the first equation vanishes and we see

that v3 is free to choose. Choosing v3 = 1 yields the eigenvector

◆

⇣
1 + i

0
1

⌘

Z, and so

e
⇡t
@v = e

it

◆

⇣
1 + i

0
1

⌘

Z

= (cos(t) + i sin(t))

◆

⇣
1 + i

0
1

⌘

Z

=

◆

⇣
cos(t)� sin(t) + i cos(t) + i sin(t)

0
cos(t) + i sin(t)

⌘

Z .

Taking real and imaginary parts, we find that the general solution is of the form

@x(t) = c1e
t
@v1 + c2

◆

⇣
cos(t)� sin(t)

0
cos(t)

⌘

Z+ c3

◆

⇣
cos(t) + sin(t)

0
sin(t)

⌘

Z .

Any solution with c1 = 0 will be periodic! When is this the case? Observe that

@x(0) = @x0 = c1@v1 + c2

◆

⇣
1
0
1

⌘

Z+ c3

◆

⇣
1
0
0

⌘

Z ,

so c1 = 0 precisely when @x0 is in the linear span of

◆

⇣
1
0
1

⌘

Z and

◆

⇣
1
0
0

⌘

Z. Since

◆

⇣
1
0
1

⌘

Z �

◆

⇣
1
0
0

⌘

Z =

◆

⇣
0
0
1

⌘

Z, the

linear span is equivalently all vectors of the form a

◆

⇣
1
0
0

⌘

Z+ b

◆

⇣
0
0
1

⌘

Z. Hence, any initial condition of the form

@x0 =

◆

⇣
a

0
b

⌘

Z for constants a and b will yield periodic solutions.
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9. Homework 9

Exercise 9.1 (3.10.1). Find the general solution of

d@x

dt
=

◆

⇣
0 �1 1
2 �3 1
1 �1 �1

⌘

Z @x.

Sol.We make use of the eigenmethod, first searching for eigenvalues of

A =

◆

⇣
0 �1 1
2 �3 1
1 �1 �1

⌘

Z

solving the characteristic equation

0 = det(A� ↵I) =

✓✓✓✓✓✓

�↵ �1 1
2 �3� ↵ 1
1 �1 �1� ↵

✓✓✓✓✓✓

= �↵((�3� ↵)(�1� ↵) + 1) + (2(�1� ↵)� 1) +�2� (�3� ↵)

= �↵(4 + 4↵+ ↵
2) +�3� 2↵+�2 + 3 + ↵

= �↵
3 � 4↵2 � 5↵� 2

= �(↵+ 2)(↵+ 1)2.

We see that the eigenvalues of A are ↵ = �2 and ↵ = �1 (with multiplicity 2).

First we consider ↵ = �2, and search for an eigenvector @v1 satisfying

@0 = (A+ 2I)@v1 =

◆

⇣
2 �1 1
2 �1 1
1 �1 1

⌘

Z@v1.

Proceeding via Gaussian elimination, we find
◆

⇣
2 �1 1
2 �1 1
1 �1 1

⌘

Z 

◆

⇣
2 �1 1
0 0 0
0 � 1

2
1
2

⌘

Z 

◆

⇣
2 �1 1
0 1 �1
0 0 0

⌘

Z 

◆

⇣
2 0 0
0 1 �1
0 0 0

⌘

Z .

Thus, the above equation is equivalent to solving

@0 = (A+ 2I)@v1 =

◆

⇣
2 0 0
0 1 �1
0 0 0

⌘

Z@v1.

We conclude that the first component of @v1 must be zero and the second and third components must be

equal, so any eigenvector is a constant multiple of @v1 =

◆

⇣
0
1
1

⌘

Z.

Next, we consider ↵ = �1, and first search for an eigenvector @v2 satisfying

@0 = (A+ I)@v2 =

◆

⇣
1 �1 1
2 �2 1
1 �1 0

⌘

Z@v2.

Proceeding via Gaussian elimination, we find
◆

⇣
1 �1 1
2 �2 1
1 �1 0

⌘

Z 

◆

⇣
1 �1 1
0 0 �1
0 0 �1

⌘

Z 

◆

⇣
1 �1 0
0 0 1
0 0 0

⌘

Z .
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Thus, the above equation is equivalent to solving

@0 = (A+ 2I)@v2 =

◆

⇣
1 �1 0
0 0 1
0 0 0

⌘

Z@v2.

We conclude that the third component of @v2 must be zero, and the first and second components must be

equal. Hence, any eigenvector is a constant multiple of @v2 =

◆

⇣
1
1
0

⌘

Z.

This yields two linearly independent solutions, but we need a third. To find this, we seek a generalized
eigenvector @v3 for ↵ = �1 satisfying (A+ I)2@v3 = 0, as then we have the simple form

e
At

@v3 = e
pt
e
(A+I)t

@v3 = e
pt

R
I+ t(A+ I) +

t
2

2!
(A+ I)2 + · · ·

�
@v3

= e
pt

R
@v3 + t(A+ I)@v3 +

t
2

2!
(A+ I)2@v3 + · · ·

�

= e
pt (@v3 + t(A+ I)@v3 + 0)

= e
pt (@v3 + t(A+ I)@v3) .

Computing, we need

@0 = (A+ I)2@v3 =

◆

⇣
1 �1 1
2 �2 1
1 �1 0

⌘

Z
2

@v3 =

◆

⇣
0 0 0
�1 1 0
�1 1 0

⌘

Z@v3.

Proceeding via Gaussian elimination, we find
◆

⇣
0 0 0
�1 1 0
�1 1 0

⌘

Z 

◆

⇣
1 �1 0
0 0 0
0 0 0

⌘

Z

and so the above equation is equivalent to solving

@0 = (A+ I)@v3 =

◆

⇣
1 �1 0
0 0 0
0 0 0

⌘

Z@v3.

We conclude only that the first two components must be equal. Since we seek a vector that is linearly

independent from @v2, we set the third component equal to 1 and choose @v3 =

◆

⇣
1
1
1

⌘

Z as our generalized

eigenvector. Observe that

(A+ I)@v3 =

◆

⇣
1 �1 1
2 �2 1
1 �1 0

⌘

Z

◆

⇣
1
1
1

⌘

Z =

◆

⇣
1
1
0

⌘

Z .

Hence, the general solution is given by

@x(t) = c1e
p2t

@v1 + c2e
pt
@v2 + c3e

pt (@v3 + t(A+ I)@v3)

= c1e
p2t

◆

⇣
0
1
1

⌘

Z+ c2e
pt

◆

⇣
1
1
0

⌘

Z+ c3e
pt

◆

⇣

◆

⇣
1
1
1

⌘

Z+ t

◆

⇣
1
1
0

⌘

Z

⌘

Z

= c1e
p2t

◆

⇣
0
1
1

⌘

Z+ e
pt

◆

⇣c2

◆

⇣
1
1
0

⌘

Z+ c3

◆

⇣
t+ 1
t+ 1
1

⌘

Z

⌘

Z .
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Up to redefining constants, we can rewrite this solution as

@x(t) = c1e
p2t

◆

⇣
0
1
1

⌘

Z+ e
pt

◆

⇣c2

◆

⇣
1
1
0

⌘

Z+ c3

◆

⇣
t

t

1

⌘

Z

⌘

Z .

Exercise 9.2 (3.10.15). Suppose that A2 = ⇡A. Find e
At.

Sol.We determine the powers of A recursively. Notice that

A2 = ⇡A

A3 = A2A = ⇡
2A

A4 = A3A = ⇡
2A2 = ⇡

3A

A5 = A4A = ⇡
3A2 = ⇡

4A

...

An = Anp1A = ⇡
np2A2 = ⇡

np1A

...

Hence, we see that

e
At = I+ tA+

t
2

2!
A2 + · · ·+ t

n

n!
An + · · ·

= I+ tA+
⇡t

2

2!
A+ · · ·+ ⇡

np1
t
n

n!
A+ · · ·

= I+
1

⇡

R
⇡tA+

⇡
2
t
2

2!
A+ · · ·+ ⇡

n
t
n

n!
A+ · · ·

�

= I+
1

⇡

R
�1 + 1 + ⇡t+

⇡
2
t
2

2!
+ · · ·+ ⇡

n
t
n

n!
+ · · ·

�
A

= I+
e
!t � 1

⇡
A.

Exercise 9.3 (3.10.17). Let

A =

R
0 1
�1 0

�
.

1. Show that A2 = �I.

2. Show that

e
At =

R
cos t sin t
� sin t cos t

�
.

Proof. The first item is a straightforward computation, and we see

A2 =

R
0 1
�1 0

�R
0 1
�1 0

�
=

R
�1 0
0� 1

�
= �I.

For the second item we could solve the equation d@x
dt = A@x, but instead we exploit the symmetry from the

first point. Since A2 = �I, we also have A3 = �A and A4 = �A2 = I. Continuing in this way, for any
k 1 0, we have

A4k = I, A4k+1 = A, A4k+2 = �I, A4k+3 = �A.
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Hence, we can write

e
At =

"p

n=0

t
n

n!
An =

p

n=4k
k#0

t
n

n!
I+

p

n=4k+1
k#0

t
n

n!
A�

p

n=4k+2
k#0

t
n

n!
I�

p

n=4k+3
k#0

t
n

n!
A

=

( "p

k=0

(�1)kt2k

(2k)!

�
I+

( "p

k=0

(�1)kt2k+1

(2k + 1)!

�
A

= cos(t)I+ sin(t)A,

where we have identified the Taylor series expansions of cos t and sin t. Hence

e
At = cos(t)I+ sin(t)A =

R
cos t 0
0 cos t

�
+

R
0 sin t

� sin t 0

�
=

R
cos t sin t
� sin t cos t

�
,

as desired.

Exercise 9.4 (3.11.1). Compute e
At for

A =

◆

⇣
1 �1 �1
1 3 1
�3 1 �1

⌘

Z .

Sol.We determine a fundamental matrix solution X for the equation

d@x

dt
= A@x

and compute X(t)X(0)p1. To do so, we make use of the eigenmethod, finding eigenvalues of A which satisfy

0 = det(A� ↵I) =

✓✓✓✓✓✓

1� ↵ �1 �1
1 3� ↵ 1
�3 1 �1� ↵

✓✓✓✓✓✓

= (1� ↵)((3� ↵)(�1� ↵)� 1) + (�1� ↵+ 3)� (1 + 3(3� ↵))

= (1� ↵)(↵2 � 2↵� 4) + 2� ↵� 10 + 3↵

= �↵
3 + 3↵2 + 4↵� 12

= �(↵� 3)(↵� 2)(↵+ 2).

Thus, the eigenvalues of A are ↵ = 3, ↵ = 2 and ↵ = �2. We seek associated eigenvectors.

First, we consider ↵ = 3, and search for an eigenvector @v1 satisfying

@0 = (A� 3I)@v1 =

◆

⇣
�2 �1 �1
1 0 1
�3 1 �4

⌘

Z@v1.

Proceeding via Gaussian elimination, we find
◆

⇣
�2 �1 �1
1 0 1
�3 1 �4

⌘

Z 

◆

⇣
1 1

2
1
2

0 � 1
2

1
2

0 5
2 � 5

2

⌘

Z 

◆

⇣
1 0 1
0 1 �1
0 0 0

⌘

Z .

Thus, the above equation is equivalent to

@0 = (A� 3I)@v1 =

◆

⇣
1 0 1
0 1 �1
0 0 0

⌘

Z@v1.
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We conclude that the second and third components of @v1 must be equal, and the first and third components

must be opposites. Hence, any eigenvector for ↵ = 3 is a constant multiple of @v1 =

◆

⇣
�1
1
1

⌘

Z, and @x1(t) =

◆

⇣
�e

3t

e
3t

e
3t

⌘

Z .

Next, we consider ↵ = 2 and search for an eigenvector @v2 satisfying

@0 = (A� 2I)@v2 =

◆

⇣
�1 �1 �1
1 1 1
�3 1 �3

⌘

Z@v2.

Proceeding via Gaussian elimination, we find
◆

⇣
�1 �1 �1
1 1 1
�3 1 �3

⌘

Z =

◆

⇣
1 1 1
0 0 0
0 4 0

⌘

Z 

◆

⇣
1 0 1
0 1 0
0 0 0

⌘

Z .

Thus, the above equation is equivalent to

@0 = (A� 2I)@v1 =

◆

⇣
1 0 1
0 1 0
0 0 0

⌘

Z@v2.

We conclude that the second component of @v2 must vanish, and the first and third components must be

opposites. Hence, any eigenvector for ↵ = 2 must be a constant multiple of @v2 =

◆

⇣
�1
0
1

⌘

Z, and @x2(t) =

◆

⇣
�e

2t

0
e
2t

⌘

Z.

Finally, we consider ↵ = �2 and search for an eigenvector @v3 satisfying

@0 = (A+ 2I)@v3 =

◆

⇣
3 �1 �1
1 5 1
�3 1 1

⌘

Z@v3.

Proceeding via Gaussian elimination, we find
◆

⇣
3 �1 �1
1 5 1
�3 1 1

⌘

Z 

◆

⇣
1 � 1

3 � 1
3

0 16
3

4
3

0 0 0

⌘

Z 

◆

⇣
1 0 � 1

4
0 1 1

4
0 0 0

⌘

Z .

We conclude that the third component of @v3 is 4 times the first, and �4 times the second. Thus, any

eigenvector for ↵ = �2 is a constant multiple of @v3 =

◆

⇣
1
�1
4

⌘

Z, and @x3(t) =

◆

⇣
e
p2t

�e
p2t

4ep2t

⌘

Z. Thus,

X(t) =

◆

⇣
�e

3t �e
2t

e
p2t

e
3t 0 �e

p2t

e
3t

e
2t 4ep2t

⌘

Z .

Hence

X(0) =

◆

⇣
�1 �1 1
1 0 �1
1 1 4

⌘

Z ,
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and we can find the inverse by Gaussian elimination on the augmented matrix

◆

⇣
�1 �1 1 1 0 0
1 0 �1 0 1 0
1 1 4 0 0 1

⌘

Z 

◆

⇣
1 1 �1 �1 0 0
0 �1 0 1 1 0
0 0 5 1 0 1

⌘

Z



◆

⇣
1 0 �1 0 1 0
0 1 0 �1 �1 0
0 0 1 1

5 0 1
5

⌘

Z



◆

⇣
1 0 0 1

5 1 1
5

0 1 0 �1 �1 0
0 0 1 1

5 0 1
5

⌘

Z .

Thus,

Xp1(0) =
1

5

◆

⇣
1 5 1
�5 �5 0
1 0 1

⌘

Z

and so

e
At = X(t)Xp1(0) =

1

5

◆

⇣
�e

3t �e
2t

e
p2t

e
3t 0 �e

p2t

e
3t

e
2t 4ep2t

⌘

Z

◆

⇣
1 5 1
�5 �5 0
1 0 1

⌘

Z

=
1

5

◆

⇣
�e

3t + 5e2t + e
p2t �5e3t + 5e2t �e

3t + e
p2t

e
3t � e

p2t 5e3t e
3t � e

p2t

e
3t � 5e2t + 4ep2t 5e3t � 5e2t e

3t + 4ep2t

⌘

Z .

Exercise 9.5 (3.11.15). Let X(t) be a fundamental matrix solution of

d@x

dt
= A@x.

Prove that the solution @x(t) of the initial-value problem

�
d@x
dt = A@x

@x(t0) = @x0

is @x(t) = X(t)X(t0)p1
.

Proof. Given a fundamental matrix solution X(t), we need then only find the constant vector @c such that
@x(t) = X(t)@c satisfies the initial conditions. Setting t = t0, we see that @x0 = @x(t0) = X(t0)@c, and so
@c = X(t0)p1

@x0. Hence, our particular solution is

@x(t) = X(t)@c = X(t)X(t0)
p1

.

Another way to see this would simply be by di↵erentiating the formula for @x(t) to see that it satisfies the
requisite ODE, and plugging in t = t0 directly to see that the initial conditions match.
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