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4. Homework 4

Exercise 4.1 (2.1.3). Show that the operator L defined by

L[y](t) =

Z t

a
s
2
y(s) ds

is linear; that is, L[cy] = cL[y] and L[y1 + y2] = L[y1] + L[y2].

Proof. We compute for any t, function y(t) and constant c that

L[cy](t) =

Z t

a
s
2
cy(s) ds = c

Z t

a
s
2
y(s) ds = cL[y](t).

Furthermore, for any functions y1(t) and y2(t) we have

L[y1 + y2](t) =

Z t

a
s
2(y1(s) + y2(s)) ds =

Z t

a
s
2
y1(s) ds+

Z t

a
s
2
y2(s) ds = L[y1](t) + L[y2](t),

establishing the desired linearity.

Exercise 4.2 (2.1.5). 1. Show that y1(t) =
p
t and y2(t) = 1/t are solutions of the di↵erential equation

2t2y00 + 3ty0 � y = 0 (3)

on the interval 0 < t < 1.

2. Compute W [y1, y2](t). What happens as t approaches zero?

3. Show that y1(t) and y2(t) form a fundamental set of solutions of (3) on the interval 0 < t < 1.

4. Solve the initial-value problem 8
><

>:

2t2y00 + 3ty0 � y = 0;

y(1) = 2,

y
0(1) = 1.

Sol.

1. Proof. First, we observe that for any t > 0,

y1(t) =
p
t

y
0
1(t) =

1

2
p
t

y
00
1 (t) =

�1

4
t
�3/2 =

�1

4t3/2
.

Hence,

2t2y00(t) + 3ty0(t)� y(t) = 2t2
�1

4t3/2
+ 3t

1

2
p
t
�

p
t

= �1

2

p
t+

3

2

p
t�

p
t

= 0,

and y1(t) solves (3) on the interval 0 < t < 1. Next, we also have for all t > 0 that

y2(t) =
1

t
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y
0
2(t) = � 1

t2

y
00
2 (t) =

2

t3
.

Hence,

2t2y00(t) + 3ty0(t)� y(t) = 2t2
2

t3
+ 3t

�1

t2
� 1

t

=
4

t
� 3

t
� 1

t

= 0,

and y2(t) solves (3) on the interval 0 < t < 1, as desired.

2. Using the above computations, we see that

W [y1, y2](t) = y1(t)y
0
2(t)� y

0
1(t)y2(t)

=
p
t
�1

t2
� 1

2
p
t

1

t

=
�1

t3/2
� 1

2t3/2

=
�3

2t3/2
,

which tends to �1 as t # 0.

3. Proof. Notice that by dividing through by 2t2 for t > 0, equation (3) is in the form y
00+p(t)y0+q(t)y = 0

for continuous p and q. Furthermore, W [y1, y2](t) vanishes for all positive time. Hence, by Theorem 2 in
§2.1, the general solution to (3) is of the form y(t) = c1y1(t)+ c2y2(t), and {y1, y2} form a fundamental
set of solutions. (Note: if you don’t feel comfortable using Theorem 2 on an infinite interval, you can
just use it on the interval (0, N) and take N ! 1).

4. Now that we have our general solution, we need only match it to the initial conditions! Since y(1) = 2,
we have

2 = y(1) = c1y1(t) + c2y2(1) = c1 + c2.

Since y
0(1) = 1, we have

1 = y
0(1) = c1y

0
1(t) + c2y

0
2(t) =

c1

2
� c2.

Thus, adding the two equations, we have 3
2c1 = 3, so c1 = 2 and c2 = 0. Hence, the solution is

y(t) = 2y1(t) = 2
p
t.

Exercise 4.3 (2.1.7). Compute the Wronskian of the following pairs of functions.

1. sin(at), cos(bt)

2. sin2(t), 1� cos(2t)

3. e
at, ebt

4. e
at, teat

5. t, t ln(t)

6. e
at sin(bt), eat cos(bt).

Sol.Oof! This is a marathon!
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1. We have

W [sin(at), cos(bt)] = sin(at)(cos(bt))0 � (sin(at))0 cos(bt)

= �b sin(at) sin(bt)� a cos(at) cos(bt).

2. For this one, we see that

W [sin2(t), 1� cos(2t)] = sin2(t)(1� cos(2t))0 � (sin2(t))0(1� cos(2t))

= sin2(t)(2 sin(2t))� (2 sin(t) cos(t))(1� cos(2t))

= 2 sin2(t) sin(2t)� sin(2t)(sin2(t) + cos2(t)� cos2(t) + sin2(t))

= 2 sin2(t) sin(2t)� 2 sin(2t) sin2(t)

= 0.

This is unsurprising, since 1 � cos(2t) = sin2(t) + cos2(t) � cos2(t) + sin2(t) = 2 sin2(t), which is a
constant multiple of sin2(t)!

3. Here, we have

W [eat, ebt] = e
at(ebt)0 � (eat)0ebt

= be
(a+b)t � ae

(a+b)t

= (b� a)e(a+b)t
.

4. For this one, we observe

W [eat, teat] = e
at(teat)0 � (eat)0teat

= e
at(eat + ate

at)� ae
at
te

at

= e
2at + ate

2at � ate
2at

= e
2at

.

5. Here, we compute

W [t, t ln(t)] = t(t ln(t))0 � (t)0t ln(t)

= t

✓
t

t
+ ln(t)

◆
� t ln(t)

= t+ t ln(t)� t ln(t)

= t.

6. Finally, we find

W [eat sin(bt), eat cos(bt)] = e
at sin(bt)(eat cos(bt))0 � (eat sin(bt))0(eat cos(bt))

= e
at sin(bt)(aeat cos(bt)� be

at sin(bt))� (aeat sin(bt) + be
at cos(bt))eat cos(bt)

= ae
2at sin(bt) cos(bt)� be

2at sin2(bt)� ae
2at sin(bt) cos(bt)� be

2at cos2(bt)

= �be
2at(sin2(bt) + cos2(bt))

= �be
2at

.

Slick!

Exercise 4.4 (2.1.9). 1. Let y1(t) and y2(t) be solutions of y00 + p(t)y0 + q(t)y = 0 on the interval ↵ <

t < �, with y1(t0) = 1, y
0
1(t0) = 0, y2(t0) = 0 and y

0
2(t0) = 1. Show that y1(t) and y2(t) form a

fundamental set of solutions on the interval ↵ < t < �.
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2. Show that y(t) = y0y1(t) + y
0
0y2(t) is the solution of the initial value problem

8
><

>:

y
00 + p(t)y0 + q(t)y = 0

y(t0) = y0

y
0(t0) = y

0
0.

Proof. 1. For this first item, Theorem 2 of §2.1 tells us that we need only show that the Wronskian doesn’t
vanish on the interval (↵,�). However, by Theorem 3, it su�ces to show that the Wronskian does not
vanish at some t0 with ↵ < t0 < �! Choosing the given t0, we see that

W [y1, y2](t0) = y1(t0)y
0
2(t0)� y

0
1(t0)y2(t0) = 1(1)� 0(0) = 1 6= 0.

Hence, W does not vanish on (↵,�) and we see that the general solution is of the form y(t) = c1y1(t)+
c2y2(t). Thus, {y1, y2} form a fundamental set of solutions.

2. For the second item then, we need only match the initial conditions! We have

y0 = y(t0) = c1y1(t0) + c2y2(t0) = c1(1) = c1,

so c1 = y0 and
y
0
0 = y

0(t0) = c1y
0
1(t0) + c2y

0
2(t0) = c2(1) = c2,

so c2 = y
0
0. Hence, the solution of our initial value problem is y(t) = y0y1(t) + y

0
0y2(t), as desired! In a

sense, y1 and y2 can be thought of as a standard basis for our solution space.
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5. Homework 5

Exercise 5.1 (2.2.5). Solve the following initial value problem:
8
><

>:

y
00 � 3y0 � 4y = 0;

y(0) = 1,

y
0(0) = 0.

Sol. Proposing solutions of the form y = e
rt, we arrive at the characteristic equation

r
2 � 3r � 4 = 0 = (r � 4)(r + 1)

with distinct roots r = 4 and r = �1. Thus, the general solution is of the form y(t) = ae
4t + be

�t.
Di↵erentiating, y0(t) = 4ae4t � be

�t. Matching initial conditions, we have

1 = y(0) = a+ b

0 = y
0(0) = 4a� b.

Adding the two equations, we find 5a = 1 so a = 1/5, and hence b = 4/5. Thus,

y(t) =
1

5
e
4t +

4

5
e
�t
.

Exercise 5.2 (2.2.9). Let y(t) be the solution of the initial value problem
8
><

>:

y
00 + 5y0 + 6y = 0;

y(0) = 1,

y
0(0) = V.

For what values of V does y(t) remain nonnegative for all t � 0?

Sol.We first determine the solution in terms of V . First, proposing solutions of the form y = e
rt, we arrive

at the characteristic equation
r
2 + 5r + 6 = 0 = (r + 3)(r + 2)

with distinct roots r = �3 and r = �2. Thus, the general solution is of the form y(t) = ae
�3t + be

�2t.
Di↵erentiating, y0(t) = �3ae�3t � 2be�2t. Matching initial conditions, we find

1 = y(0) = a+ b

V = y
0(0) = �3a� 2b.

Multiplying the first equation by 3 and summing, we find b = V + 3, so a = �(V + 2). Hence,

y(t) = �(V + 2)e�3t + (V + 3)e�2t
.

First, consider the case when the coe�cient on e
�2t is positive, i.e. V > �3 Then, since e

�2t � e
�3t for all

t � 0 (because e
�3t decays faster), we have

y(t) = (V + 3)e�2t � (V + 2)e�3t � (V + 3)e�3t � (V + 2)e�3t = (V + 3� V � 2)e�3t = e
�3t � 0

and see that y is always nonnegative. This also holds for V = �3; in that situation, V + 3 = 0 and so

y(t) = (�V � 2)e�3t = (3� 2)e�3t = e
�3t � 0.

However, nonnegativity is no longer guaranteed when V < �3. To see this, suppose for the sake of a
contradiction that y � 0 for all t � 0. Then,

y(t) = (V + 3)e�2t � (V + 2)e�3t � 0
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(V + 3)e�2t � (V + 2)e�3t

(V + 3)et � V + 2

e
t  V + 2

V + 3

for all t � 0. The sign of the inequality switched in the last line since V + 3 < 0. Notice that since the right
hand side is independent of t, this would imply that et is bounded from above for t � 0, which is not true!
Hence, y(t) cannot always be nonnegative when V < �3 and thus we require V � �3 to force y(t) � 0 for
all t � 0.

Exercise 5.3 (2.2.1.3). Find the general solution of

y
00 + 2y0 + 3y = 0.

Sol. Proposing solutions of the form y = e
rt, we find the characteristic equation

r
2 + 2r + 3 = 0

with solutions

r =
�2±

p
22 � 4(3)

2
=

�2±
p
�8

2
= �1± i

p
2.

Choosing the root �1 + i
p
2, we have

e
rt = e

�t+it
p
2 = e

�t cos(
p
2t) + ie

�t sin(
p
2t).

Since the real and imaginary parts form linearly independent solutions of the original ODE, we find that our
general solution takes the form

y(t) = ae
�t cos(

p
2t) + be

�t sin(
p
2t)

for constants a and b.

Exercise 5.4 (2.2.1.5). Solve the initial value problem

8
><

>:

y
00 + y

0 + 2y = 0;

y(0) = 1,

y
0(0) = �2.

Sol. First, we find the general solution. Proposing solutions of the form y = e
rt, we find the characteristic

equation
r
2 + r + 2 = 0

with solutions

r =
�1±

p
12 � 4(2)

2
=

�1± i
p
7

2
.

Choosing the root �1+i
p
7

2 , we have

e
rt = e

� 1
2 t+it

p
7

2 = e
� 1

2 t cos

 p
7

2
t

!
+ ie

� 1
2 t sin

 p
7

2
t

!
.

Since the real and imaginary parts form linearly independent solutions of the original ODE, we find that our
general solution takes the form

y(t) = ae
� 1

2 t cos

 p
7

2
t

!
+ be

� 1
2 t sin

 p
7

2
t

!
= e

� 1
2 t

 
a cos

 p
7

2
t

!
+ b sin

 p
7

2
t

!!
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for constants a and b. Di↵erentiation yields

y
0(t) = �1

2
y(t) + e

� 1
2 t

 
�a

p
7

2
sin

 p
7

2
t

!
+

b
p
7

2
cos

 p
7

2
t

!!
.

Matching to the initial conditions given, we find

1 = y(0) = a

�2 = y
0(0) = �1

2
+

b
p
7

2
,

so a = 1 and b = � 3p
7
. Hence,

y(t) = e
� 1

2 t

 
cos

 p
7

2
t

!
� 3p

7
sin

 p
7

2
t

!!
.

Exercise 5.5 (2.2.2.3). Solve the initial value problem

8
><

>:

9y00 + 6y0 + y = 0;

y(0) = 1,

y
0(0) = 0.

Sol. Proposing solutions of the form y = e
rt, we find the characteristic equation

9r2 + 6r + 1 = 0 = 9

✓
r +

1

3

◆2

,

with double root r = �1
3 . Hence, the general solution takes the form

y(t) = (a+ bt)e�
1
3 t.

Di↵erentiating,

y
0(t) = �1

3
y(t) + be

� 1
3 t.

Matching initial conditions, we find

1 = y(0) = a

0 = y
0(0) = �1

3
+ b,

so a = 1 and b = 1
3 . Thus,

y(t) =

✓
1 +

t

3

◆
e
� 1

3 t.

Exercise 5.6 (2.2.2.9). Here is an alternate and very elegant way of finding a second solution y2(t) of

ay
00 + by

0 + cy = 0

when ar
2 + br + c = 0 has a double root.

1. Assume that b2 = 4ac. Show that

L[ert] = a(ert)00 + b(ert)0 + ce
rt = a(r � r1)

2
e
rt

for r1 = � b
2a .
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2. Show that
@

@r
L[ert] = L


@

@r
e
rt

�
= L[tert] = 2a(r � r1)e

rt + at(r � r1)
2
e
rt
.

3. Conclude that L[ter1t] = 0. Hence, y2(t) = te
r1t is a second solution of the above constant coe�cient

equation in the double root case.

Proof. First, when b
2 = 4ac, we can write

ar
2 + br + c = a

✓
r
2 +

b

a
r +

c

a

◆
= a

✓
r +

b

2a

◆2

,

since
�

b
2a

�2
= b2

4a2 = c
a . Hence,

L[ert] = a(ert)00 + b(ert)0 + ce
rt = a(r � r1)

2
e
rt

= ar
2
e
rt + bre

rt + ce
rt

=
�
ar

2 + br + c
�
e
rt

= a

✓
r +

b

2a

◆2

e
rt

= a(r � r1)
2
e
rt
,

as desired. Next, notice that we can interchange the order of partial derivatives; writing the 0 derivative as
@
@t , we see that

@

@r
L[ert] =

@

@r

�
(ert)00 + b(ert)0 + ce

rt = a(r � r1)
2
e
rt
�

= a
@

@r

@
2

@t2
e
rt + b

@

@r

@

@t
e
rt + c

@

@r
e
rt

= a
@
2

@t2

✓
@

@r
e
rt

◆
+ b

@

@t

✓
@

@r
e
rt

◆
+ c

✓
@

@r
e
rt

◆

= a

✓
@

@r
e
rt

◆00
+ b

✓
@

@r
e
rt

◆0
+ c

✓
@

@r
e
rt

◆

= L


@

@r
e
rt

�
.

In particular, we can conclude that

L[tert] = L


@

@r

�
=

@

@r
L[ert]

=
@

@r

�
a(r � r1)

2
e
rt
�

= 2a(r � r1)e
rt + at(r � r1)

2
e
rt
,

as desired. Finally, notice that if we set r = r1 we find

L[ter1t] = 2a(r1 � r1)e
r1t + at(r1 � r1)

2
e
r1t = 0,

as desired.

Exercise 5.7 (2.3.1). Three solutions of a certain second-order nonhomogeneous linear equation are

 1(t) = t
2
,  2(t) = t

2 + e
2t

and
 3(t) = 1 + t

2 + 2e2t.

Find the general solution of this equation.
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Sol. By assumption, all of the  i above solve L[ i] = g for some function g. Notice then that

L[ 2 �  1] = L[ 3 �  2] = 0,

so that  2(t) �  1(t) = e
2t and  3(t) �  2(t) = e

2t + 1 solve the homogeneous problem. These are linearly
independent solutions, since

W [e2t, e2t + 1] = 2e2te2t � 2e2t(e2t + 1) = �2e2t 6= 0.

Finally, since any  i gives a particular solution of L[y] = g, we can in particular choose  1 and find that he
general solution is

y(t) = ae
2t + b(e2t + 1) + t

2 = c1 + c2e
2t + t

2

for some constants c1 and c2.

Exercise 5.8 (2.4.1). Find the general solution of

y
00 + y = sec(t), �⇡

2
< t <

⇡

2
.

Sol.We use the method of variation of parameters. First, we propose a solution of the form y = e
rt to the

homogeneous problem
y
00 + y = 0

and find the characteristic equation
r
2 + 1 = 0

with roots r = ±i. Choosing i, we have

e
rt = e

it = cos(t) + i sin(t)

and so the general solution to the homogeneous problem is given by a cos(t) + b sin(t) for constants a and b.

Then, proposing a particular solution of the form  (t) = u1(t)y1(t) + u2(t)y2(t) = u1(t) cos(t) + u2(t) sin(t),
we know from §2.4 that since the leading coe�cient on our second order ODE is 1, u1 and u2 are described
by

u
0
1(t) =

� sec(t) sin(t)

W [cos(t), sin(t)]
=

� tan(t)

cos2(t) + sin2(t)
= � tan(t)

and

u
0
2(t) =

sec(t) cos(t)

W [cos(t), sin(t)]
=

1

cos2(t) + sin2(t)
= 1.

Hence, u2(t) = t and integrating tan(t) we find

u1(t) =

Z
� tan(t) dt =

Z
� sin(t)

cos(t)
dt =

Z
du

u
= ln |u| = ln | cos(t)|

with the substitution u = cos(t). Since cos(t) > 0 for �⇡
2 < t <

⇡
2 , we have u1(t) = ln(cos(t)). Thus,

 (t) = ln(cos(t)) cos(t) + t sin(t) and our general solution is

y(t) = a cos(t) + b sin(t) + ln(cos(t)) cos(t) + t sin(t) = (a+ ln(cos(t))) cos(t) + (b+ t) sin(t)

for constants a and b.

Exercise 5.9 (2.4.5). Solve the initial value problem

8
><

>:

3y00 + 4y0 + y = (sin(t))e�t;

y(0) = 1,

y
0(0) = 0.
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Sol. First, we solve the homogeneous problem 3y00 + 4y0 + y = 0 by proposing solutions of the form y = e
rt

and arriving at the characteristic equation

3r2 + 4r + 1 = 0 = (3r + 1)(r + 1)

with roots r = � 1
3 and r = �1. Thus, the general solution of the homogeneous problem is given by

ae
� 1

3 t + be
�t for constants a and b.

To determine a particular solution, we use the method of variation of parameters. Since we would like to
use the formulae already derived in the book, we normalize our ODE to have leading coe�cient 1:

y
00 +

4

3
y
0 +

1

3
y =

1

3
(sin(t))e�t

.

Then, proposing a particular solution of the form  (t) = u1(t)y1(t) + u2(t)y2(t) = u1(t)e�
1
3 t + u2(t)e�t

, we
have that u1 and u2 are described by

u
0
1(t) =

� 1
3 sin(t)e

�t
e
�t

W [e�
1
3 t, e�t]

=
� 1

3 sin(t)e
�2t

� 2
3e

� 4
3 t

=
1

2
sin(t)e�

2
3 t

and

u
0
2(t) =

1
3 sin(t)e

�t
e
� 1

3 t

W [e�
1
3 t, e�t]

=
1
3 sin(t)e

� 4
3 t

� 2
3e

� 4
3 t

= �1

2
sin(t).

u2 can be easily integrated to yield u2(t) = 1
2 cos(t). u1 is trickier, and we use of a general formula for

integrals of the form
R
sin(t)eat dt. Integrating by parts twice, we have

Z
sin(t)eat dt =

Z
ae

at cos(t) dt� e
at cos(t)

=

Z
�a

2
e
at sin(t) dt+ a sin(t)eat � cos(t)eat.

Rearranging, we have Z
sin(t)eat dt =

a sin(t)� cos(t)

1 + a2
e
at
.

Thus,

u1(t) =
1

2

Z
sin(t)e�

2
3 t dt =

1

2

� 2
3 sin(t)� cos(t)

1 + 4
9

e
� 2

3 t = � 9

26
e
� 2

3 t

✓
2

3
sin(t) + cos(t)

◆

and

 (t) = u1(t)e
� 1

3 t + u2(t)e
�t

= � 3

13
e
�t sin(t)� 9

26
e
�t cos(t) +

1

2
e
�t cos(t)

= e
�t

✓
2

13
cos(t)� 3

13
sin(t)

◆
.

So, the general solution is of the form

y(t) =

✓
b+

2

13
cos(t)� 3

13
sin(t)

◆
e
�t + ae

� 1
3 t.

Di↵erentiating,

y
0(t) = �

✓
b+

2

13
cos(t)� 3

13
sin(t)

◆
e
�t +

✓
� 2

13
sin(t)� 3

13
cos(t)

◆
e
�t � 1

3
ae

� 1
3 t.
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Matching to the initial conditions, we have

1 = y(0) = b+
2

13
+ a

0 = y
0(0) = �

✓
b+

2

13

◆
� 3

13
� 1

3
a.

Summing the two equations yields 2
3a = 1 + 3

13 = 16
13 , or a = 24

13 . Thus, b = �1 and

y(t) =

✓
�1 +

2

13
cos(t)� 3

13
sin(t)

◆
e
�t +

24

13
e
� 1

3 t.

Exercise 5.10 (2.5.1). Find a particular solution to

y
00 + 3y = t

3 � 1.

Sol.We guess judiciously. Motivated by the polynomial on the right hand side, we propose a solution of the
form

y(t) = a3t
3 + a2t

2 + a1t+ a0.

Di↵erentiating twice yields
y
00(t) = 6a3t+ 2a2,

and so we must match coe�cients in the equation

t
3 � 1 = y

00 + 3y

= 6a3t+ 2a2 + 3a3t
3 + 3a2t

2 + 3a1t+ 3a0

= 3a3t
3 + 3a2t

2 + (6a3 + 3a1)t+ (2a2 + 3a0).

Thus, 3a3 = 1 so a3 = 1
3 . 3a2 = 0, so a2 = 0. 6a3 + 3a1 = 2 + 3a1 = 0 so a1 = � 2

3 . Finally, 2a2 + 3a0 =
3a0 = �1, so a0 = � 1

3 . Thus,

y(t) =
1

3
t
3 � 2

3
t� 1

3

is a particular solution to the above ODE.

Exercise 5.11 (2.5.3). Find a particular solution to

y
00 � y = t

2
e
t
.

Sol.We guess judiciously. Motivated by the polynomial with an exponential on the right hand side, we guess
a solution of the form

y(t) = (a2t
2 + a1t+ a0)e

t
.

Di↵erentiating twice, we have
y
00(t) = 2a2e

t + 2(2a2t+ a1)e
t + y

and observe that
y
00 � y = 2a2e

t + 2(2a2t+ a1)e
t
.

This cannot be made equal to t
2
e
t; due to the structure of the equation, the t

2 term dropped out. To get
around this, we try multiplying by t and propose a solution of the form

y(t) = (a2t
2 + a1t+ a0)te

t = (a2t
3 + a1t

2 + a0t)e
t
.

Then, di↵erentiating twice yields

y
00 = (6a2t+ 2a1)e

t + 2(3a2t
2 + 2a1t+ a0)e

t + y
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and we must match coe�cients in

t
2
e
t = y

00 � y

= (6a2t+ 2a1)e
t + 2(3a2t

2 + 2a1t+ a0)e
t + y � y

= (6a2t
2 + (6a2 + 4a1)t+ (2a1 + 2a0))e

t
.

We have 6a2 = 1 so a2 = 1
6 , 6a2 + 4a1 = 1 + 4a1 = 0 so a1 = � 1

4 , and 2a1 + 2a0 = � 1
2 + 2a0 = 0 so a0 = 1

4 .
Thus,

y(t) =

✓
1

6
t
2 � 1

4
t+

1

4

◆
te

t

is a particular solution to the above ODE.

Exercise 5.12 (2.5.9). Find a particular solution to

y
00 � 2y0 + 5y = 2 cos2 t.

Sol. First, we observe from the trigonometric identity cos(2t) = 2 cos2 t�1 that 2 cos2 t = 1+cos(2t). Hence,
our right hand side is really a linear polynomial in cosine, so we propose a solution of the form

y(t) = a+ b sin(2t) + c cos(2t).

Di↵erentiating yields
y
0(t) = 2b cos(2t)� 2c sin(2t)

and
y
00(t) = �4b sin(2t)� 4c cos(2t).

Hence, we must match coe�cients in the equation

2 cos2 t = 1 + cos(2t) = y
00 � 2y0 + 5y

= �4b sin(2t)� 4c cos(2t)� 4b cos(2t) + 4c sin(2t) + 5a+ 5b sin(2t) + 5c cos(2t)

= 5a+ (b+ 4c) sin(2t) + (c� 4b) cos(2t).

5a = 1, so a = 1
5 . Since b+ 4c = 0 and c� 4b = 1, we can multiply the first equation by 4 and add to find

that 17c = 1, or c = 1
17 . Then, b = � 4

17 and

y(t) =
1

5
� 4

17
sin(2t) +

1

17
cos(2t)

solves the above ODE.

Exercise 5.13 (2.5.13). Find a particular solution to

y
00 � 3y0 + 2y = e

t + e
2t
.

Sol.We guess judiciously. Normally, we would propose a solution of the form ae
t + be

2t given the right hand
side, but we notice that

(et)00 � 3(et)0 + 2et = e
t � 3et + 2et = 0

and
(e2t)00 � 3(e2t)0 + 2e2t = 4e2t � 6e2t + 2e2t = 0,

so that both e
t and e

2t are solutions to the homogeneous problem. Hence, we try multiplying by t and
propose a solution of the form

y(t) = ate
t + bte

2t
.

Di↵erentiating, we find
y
0 = ae

t + ate
t + be

2t + 2bte2t
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and
y
00 = 2aet + ate

t + 4be2t + 4bte2t.

Hence, we must match coe�cients in the equation

e
t + e

2t = y
00 � 3y0 + 2y

= 2aet + ate
t + 4be2t + 4bte2t � 3aet � 3atet � 3be2t � 6bte2t + 2atet + 2bte2t

= (2a� 3a)et + (at� 3at+ 2at)et + (4b� 3b)e2t + (4bt� 6bt+ 2bt)e2t

= �ae
t + be

2t
.

Hence, a = �1 and b = 1, so
y(t) = �te

t + te
2t = te

t(et � 1)

solves the above ODE.
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6. Homework 6

In all of my solutions for §2.6 problems, I’ll elide the units in most of the computations since all problems
give standard SI units. We also always choose the downward direction as the positive direction for vertical
oscillation, and the rightward direction as positive for horizontal oscillation.

Exercise 6.1 (2.6.1). It is found experimentally that a 1 kg mass stretches a spring 49/320 m. If the mass
is pulled down an additional 1/4 m and released, find the amplitude, period and frequency of the resulting
motion, neglecting air resistance (use g = 9.8 m/s2).

Sol. First, we determine the spring constant. The equilibrium stretch length of the spring tells us where
gravity and the restoring force of the spring balance out, i.e.

kx =
49

320
k = mg = 9.8.

Hence, k = 64. With this, we can right the equation of motion for the spring (neglecting air resistance) as

8
><

>:

my
00 + cy

0 + ky = y
00 + 64y = 0;

y(0) = 1
4 ,

y
0(0) = 0.

Proposing solutions of the form y = e
rt, we arrive at the equation r

2 +64 = 0, or r = ±8i. Choosing r = 8i,
we have y = e

8it = cos(8t) + i sin(8t). Taking real and imaginary parts, we see that the general solution is
given by

y(t) = a cos(8t) + b sin(8t).

Di↵erentiating, y0(t) = �8a sin(8t) + 8b cos(8t). Matching the initial conditions, we find

1

4
= y(0) = a

0 = y
0(0) = 8b.

Hence, y(t) = 1
4 cos(8t). The amplitude of the oscillations is 1

4 m, the period is 2⇡
8 = ⇡

4 s, and the frequency
is 8 s�1.

Exercise 6.2 (2.6.5). A small object of mass 1 kg is attached to a spring with spring-constant 1 N/m and
is immersed in a viscous medium with damping constant 2 N · s/m. At time t = 0, the mass is lowered
1/4 m and given an initial velocity of 1 m/s in the upward direction. Show that the mass will overshoot its
equilibrium position once, and then creep back to equilibrium.

Proof. The equation of motion for this mass is given by

8
><

>:

my
00 + cy

0 + ky = y
00 + 2y0 + y = 0;

y(0) = 1
4 ,

y
0(0) = �1.

Proposing solutions of the form y = e
rt, we arrive at the equation r

2 + 2r + 1 = 0, or r = �1. Since this is
a real double root, the general solution is given by

y(t) = (a+ bt)e�t
.

Di↵erentiating, y0(t) = be
�t � y(t). Matching the initial conditions, we find

1

4
= y(0) = a
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�1 = y
0(0) = b� 1

4
,

so that a = 1
4 and b = � 3

4 . Thus, the solution is given by

y(t) =
1

4
(1� 3t)e�t

.

Let’s take a qualitative look at this solution. y(t) is positive, and hence lies below its equilibrium point, for
t <

1
3 . At t =

1
3 , it crosses back up past its equilibrium point, and y(t) stays negative (i.e. above equilibrium)

for all time. However, e�t ! 0 as t ! 1, and so y(t) ! 0; the mass slowly creeps back to equilibrium over
time.

Exercise 6.3 (2.6.11). A 1 kg mass is attached to a spring with spring constant k = 4 N/m, and hangs in
equilibrium. An external force F (t) = (1+ t+sin(2t) N is applied to the mass beginning at time t = 0. If the
spring is stretched a length (1/2+⇡/4) m or more from its equilibrium position, then it will break. Assuming
no damping present, find the time at which the spring breaks.

Sol. Let’s write down the equation of motion of the mass, so that we can determine the break point. The
equation of motion is given by

8
><

>:

my
00 + cy

0 + ky = y
00 + 4y = 1 + t+ sin(2t)

y(0) = 0

y
0(0) = 0.

To find our solution, we first must solve the homogeneous problem y
00 + 4y = 0. Proposing solutions of

the form y = e
rt, we arrive at the equation r

2 + 4 = 0, or r = ±2i. Choose r = 2i, we have y = e
2it =

cos(2t) + i sin(2t). Taking real and imaginary parts, we see that the general solution to the homogeneous
problem is given by

y(t) = c1 cos(2t) + c2 sin(2t).

Next, we search for a particular solution, for which we use the method of judicious guessing. To account
for 1 + t, we propose a polynomial of the form a + bt. Normally to take care of sin(2t) we would propose
c sin(2t)+d cos(2t), but we observe here that sin(2t) and cos(2t) solve the homogeneous problem; hence, these
parts of our guess would just vanish. To keep the trigonometric terms, we propose t(c sin(2t) + d cos(2t))
instead. Hence, we search for a solution of the form  (t) = a + bt + t(c sin(2t) + d cos(2t)). Di↵erentiating
and plugging  into the equation of motion, we find

 
0(t) = b+ (c sin(2t) + d cos(2t)) + t(2c cos(2t)� 2d sin(2t))

 
00(t) = 2(2c cos(2t)� 2d sin(2t)) + t(�4c sin(2t)� 4d cos(2t))

and so

1 + t+ sin(2t) =  
00(t) + 4 (t)

= 2(2c cos(2t)� 2d sin(2t)) + t(�4c sin(2t)� 4d cos(2t)) + 4a+ 4bt+ 4t(c sin(2t) + d cos(2t))

= 4c cos(2t)� 4d sin(2t) + 4a+ 4bt.

Matching coe�cients, we see that a = 1
4 = b, c = 0 and d = � 1

4 . Thus, the general solution is given by

y(t) = c1 cos(2t) + c2 sin(2t) +
1

4
(1 + t� t cos(2t)).

Di↵erentiating, y0(t) = �2c1 sin(2t)+2c2 cos(2t)+
1
4 (1�cos(2t)+2t sin(2t)).Matching to our initial conditions,

we find

0 = y(0) = c1 +
1

4
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0 = y
0(0) = 2c2 +

1

4
� 1

4

so that c1 = � 1
4 and c2 = 0. Hence,

y(t) =
1

4
(1 + t� t cos(2t)� cos(2t)).

Now, let’s see where the spring will break. Notice that we can control naively

|y(t)|  1

4
+

1

4
|t|+ 1

4
|t|| cos(2t)|+ 1

4
| cos(2t)|  1

2
+

1

2
|t|.

For t < ⇡
2 , we have |y(t)| < 1

2 + ⇡
4 and hence the spring will not break before t = ⇡

2 . At t =
⇡
2 , we find

y

⇣
⇡

2

⌘
=

1

4
+

1

4

⇡

2
� 1

4

⇡

2
cos(⇡)� 1

4
cos(⇡) =

1

2
+
⇡

4
,

and we see that the spring breaks at t = ⇡
2 .

Exercise 6.4 (2.6.13). Determine a particular solution  (t) of my
00 + cy

0 + ky = F0 cos(!t), of the form
 (t) = A cos(!t� �). Show that the amplitude A is a maximum when !2 = !

2
0 � 1

2 (c/m)2. This value of !
is called the resonant frequency of the system. What happens when !2

0 <
1
2 (c/m)2?

Sol.We use the method of judicious guessing, proposing as usual  (t) = a sin(!t) + b cos(!t). We will write
our solution in the desired form after solving for a and b. Di↵erentiating, we have

 
0(t) = !a cos(!t)� !b sin(!t)

 
00(t) = �!2

a sin(!t)� !
2
b cos(!t).

Substituting into our equation, we find

F0 cos(!t) = m 
00(t) + c 

0(t) + k (t)

= m(�!2
a sin(!t)� !

2
b cos(!t)) + c(!a cos(!t)� !b sin(!t)) + k(a sin(!t) + b cos(!t))

= (�m!
2
a� c!b+ ka) sin(!t) + (�m!

2
b+ c!a+ kb) cos(!t).

Matching coe�cients, we have the system of equations

(k �m!
2)a+ (�c!)b = 0

(c!)a+ (k �m!
2)b = F0.

We assume that ! 6= 0 so that our solutions are oscillatory, and c 6= 0 because the behavior at resonant
frequency is a bit di↵erent in the undamped case. Multiplying the second equation through then by k�m!2

c!
and subtracting the first equation from the second, we find

✓
k �m!

2

c!

◆
F0 =

(k �m!
2)2

c!
b+ c!b =

(k �m!
2)2 + (c!)2

c!
b,

or b = F0(k�m!2)
(k�m!2)2+(c!)2 . Substituting this into the first equation, we find

(k �m!
2)a =

F0(c!)(k �m!
2)

(k �m!2)2 + (c!)2
,

or a = F0c!
(k�m!2)2+(c!)2 . Now, our goal was to write this as  (t) = A cos(!t � �) = A cos(�) cos(!t) +

A sin(�) sin(!t). Matching coe�cients with our above solution, we have

A cos(�) =
F0(k �m!

2)

(k �m!2)2 + (c!)2
, A sin(�) =

F0c!

(k �m!2)2 + (c!)2
.
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Squaring and summing, we have

A
2 cos2 �+A

2 sin2 � = A
2 =

F
2
0 ((k �m!

2)2 + (c!)2)

((k �m!2)2 + (c!)2)2
=

F
2
0

(k �m!2)2 + (c!)2
,

so that A = F0p
(k�m!2)2+(c!)2

. Dividing, we have

A sin(�)

A cos(�)
= tan(�) =

c!

k �m!2
.

Hence, � = arctan
⇣

c!
k�m!2

⌘
. (Note: if A cos(�) = 0 then we require � = ⇡

2 so that tan(�) = 1. This agrees

with the above formula if we set arctan(1) = ⇡
2 , since A cos(�) = 0 =) k �m!

2 = 0 =) c!
k�m!2 = 1).

Thus,

 (t) = A cos(!t� �);

A =
F0p

(k �m!2)2 + (c!)2
,

� = arctan

✓
c!

k �m!2

◆
.

as desired.

Now we can turn to the question of maximizing the amplitude. If we take everything else besides ! to be
constant, then A only depends on !2; di↵erentiating with respect to !2, we find

@A

@!2
= �1

2
F0

�
(k �m!

2)2 + (c!)2
��3/2

(c2 � 2m(k �m!
2))

= �1

2
F0

�
(k �m!

2)2 + (c!)2
��3/2

(c2 � 2km+ 2m2
!
2)).

If !2
0 >

1
2

c2

m2 , then remembering that !0 =
q

k
m tells us that k

m � c2

2m2 > 0, or c2 � 2km < 0. In particular,

for small values of !2, we see that @A
@!2 > 0, and hence A increases until obtaining a maximum at c2�2km+

2m2
!
2 = 0, past which point A decreases. Rearranging using !2

0 = k
m , we find that the maximum occurs

when

!
2 =

2km

2m2
� c

2

2m2
= !

2
0 �

1

2

⇣
c

m

⌘2
,

as desired. If !2
0  1

2
c2

m2 , then rearranging as above we have that c2 � 2km � 0. In particular, c2 � 2km +
2m2

!
2
> 0 for all positive !, and so @A

@!2 is always negative for positive !. Hence, A is always decreasing
and the maximum amplitude is obtained in the ! # 0 limit.

Exercise 6.5 (2.8.1). Find the general solution of
n
y
00 + ty

0 + y = 0.

Sol.We propose a power series solution y =
P1

n=0 ant
n. Di↵erentiating, we find

y
0 =

1X

n=1

nant
n�1 =) ty

0 =
1X

n=1

nant
n =

1X

n=0

nant
n

y
00 =

1X

n=2

n(n� 1)ant
n�2 =

1X

n=0

(n+ 2)(n+ 1)an+2t
n
.

In the first sum we’ve reinserted the n = 0 term since it contributes nothing to the sum, and we’ve reindexed
the second sum to start from n = 0. Hence,

0 = y
00 + ty

0 + y
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=
1X

n=0

(n+ 2)(n+ 1)an+2t
n +

1X

n=0

nant
n +

1X

n=0

ant
n

=
1X

n=0

((n+ 2)(n+ 1)an+2 + (n+ 1)an)t
n
.

For the power series to vanish everywhere we require all coe�cients to vanish. This yields the recursion

(n+ 2)(n+ 1)an+2 + (n+ 1)an = 0 =) an+2 =
�an

n+ 2

for n � 0. Notice that we can choose a0 and a1 freely, and that the rest of the terms are determined by the
recursion relation. Furthermore, if we choose two linearly independent (a0, a1) vectors, then we will have
obtained two linearly independent solutions y1(t) and y2(t) by which we can form our general solution.

Starting with a0 = 1 and a1 = 0, we see that an = 0 for all odd n. Next, for even n we observe

a0 = 1

a2 =
�1

2

a4 =
1

2 · 4

a6 =
�1

2 · 4 · 6
...

a2n =
(�1)n

2 · 4 · · · 2n
...

so that

y1(t) =
1X

n=0

(�1)n

2 · 4 · · · 2nt
2n =

1X

n=0

(�1)nt2n

2nn!
=

1X

n=0

1

n!

✓
� t

2

2

◆n

= e
� 1

2 t
2

,

where in the last step we’ve identified the power series expansion of ex.

Next, turning to a0 = 0 and a1 = 1 we see that an = 0 for all even n. Next, for odd n we observe

a1 = 1

a3 =
�1

3

a5 =
1

3 · 5

a7 =
�1

3 · 5 · 7
...

a2n+1 =
(�1)n

3 · 5 · · · (2n+ 1)

...

so that

y2(t) =
1X

n=0

(�1)n

3 · 5 · · · (2n+ 1)
t
2n+1 =

1X

n=0

 
nY

k=1

�1

2k + 1

!
t
2n+1

.
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Our general solution is a linear combination of these two solutions, so

y(t) = c1e
� 1

2 t
2

+ c2

1X

n=0

 
nY

k=1

�1

2k + 1

!
t
2n+1

for some constants c1 and c2.

Exercise 6.6 (2.8.5). Solve the following initial-value problem:

8
><

>:

t(2� t)y00 � 6(t� 1)y0 � 4y = 0;

y(1) = 1,

y
0(1) = 0.

Sol. Since our initial condition is at t0 = 1, we propose a power series solution of the form y(t) =
P1

n=0 an(t�
1)n (this will make our computations for the coe�cients easier later on). First though, we rewrite the equation
in terms of t� 1 as

0 = t(2� t)y00 � 6(t� 1)y0 � 4y

= (2t� t
2)y00 � 6(t� 1)y0 � 4y

= �(t� 1)2y00 + y
00 � 6(t� 1)y0 � 4y.

Di↵erentiating our series,

y
0(t) =

1X

n=1

nan(t� 1)n�1 =) 6(t� 1)y0 =
1X

n=1

6nan(t� 1)n =
1X

n=0

6nan(t� 1)n

y
00(t) =

1X

n=2

n(n� 1)an(t� 1)n�2 =) (t� 1)2y00 =
1X

n=2

n(n� 1)an(t� 1)n =
1X

n=0

n(n� 1)an(t� 1)n.

In both rightmost sums, we’ve reinserted the missing terms n = 0 and n = 0, 1 respectively, since they
contribute nothing to their respective sums. We will also need to reindex y

00(t) as

y
00(t) =

1X

n=0

(n+ 2)(n+ 1)an+2(t� 1)n

in order to match coe�cients. Hence,

0 = t(2� t)y00 � 6(t� 1)y0 � 4y

= �(t� 1)2y00 + y
00 � 6(t� 1)y0 � 4y

= �
1X

n=0

n(n� 1)an(t� 1)n +
1X

n=0

(n+ 2)(n+ 1)an+2(t� 1)n �
1X

n=0

6nan(t� 1)n �
1X

n=0

4an(t� 1)n

=
1X

n=0

((�n(n� 1)� 6n� 4)an + (n+ 2)(n+ 1)an+2)(t� 1)n.

For the power series to vanish everywhere we require all coe�cients to vanish. This yields the recursion

(�n(n� 1)� 6n� 4)an + (n+ 2)(n+ 1)an+2 = 0 =) an+2 =
(n(n� 1) + 6n� 4)an

(n+ 2)(n+ 1)

=
n
2 + 5n+ 4

(n+ 2)(n+ 1)
an

=
(n+ 4)(n+ 1)

(n+ 2)(n+ 1)
an
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=
n+ 4

n+ 2
an

for n � 0. Notice now that y(1) = 1 = a0 and y
0(1) = 0 = a1. Hence, all odd terms in our recursion vanish.

To determine the even terms, we see that

a0 = 1

a2 =
4

2
· 1 = 2

a4 =
6

4
· 2 = 3

a6 =
8

6
· 4 = 4

...

a2n = n+ 1

...

For the curious reader, we can prove that a2n = n + 1 for all n using a technique called induction: mainly,
if it’s true for n = 0, and if we can say that the n = k case implies the n = k + 1 case, then it must be true
for all n (because n = 0 =) n = 1 =) n = 2 =) · · · =) n = k =) n = k + 1 =) · · · ). Clearly
a0 = 1 = 0 + 1, and if a2k = k + 1 we have

a2(k+1) = a2k+2 =
2k + 4

2k + 2
a2k =

2(k + 2)

2(k + 1)
(k + 1) = k + 2 = (k + 1) + 1,

as desired. Hence, a2n = n+ 1 for all n and

y(t) =
1X

n=0

(n+ 1)t2n

solves our initial value problem.

Exercise 6.7 (2.8.9). The equation y
00 � 2ty0 + �y = 0, � constant, is known as the Hermite di↵erential

equation, and it appears in many areas of mathematics and physics.

• Find 2 linearly independent solutions of the Hermite equation.

• Show that the Hermite equation has a polynomial solution of degree n if � = 2n. This polynomial,
when properly normalized; that is, when multiplied by a suitable constant, is known as the Hermite
polynomial Hn(t).

Sol.We propose solutions of the form y =
P1

n=0 ant
n. Di↵erentiating our series,

y
0(t) =

1X

n=1

nant
n�1 =) 2ty0 =

1X

n=1

2nant
n =

1X

n=0

2nant
n

y
00(t) =

1X

n=2

n(n� 1)ant
n�2 =

1X

n=0

(n+ 2)(n+ 1)an+2t
n
.

In the first sum we’ve reinserted the n = 0 term since it contributes nothing to the sum, and we’ve reindexed
the second sum to start from n = 0. Hence

0 = y
00 � 2ty0 + �y

=
1X

n=0

(n+ 2)(n+ 1)an+2t
n �

1X

n=0

2nant
n +

1X

n=0

�ant
n
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=
1X

n=0

((n+ 2)(n+ 1)an+2 � (2n� �)an)t
n
.

For the power series to vanish everywhere we require all coe�cients to vanish. This yields the recursion

(n+ 2)(n+ 1)an+2 � (2n� �)an = 0 =) an+2 =
2n� �

(n+ 2)(n+ 1)
an

for n � 0. Notice that we can choose a0 and a1 freely, and that the rest of the terms are determined by the
recursion relation. Furthermore, if we choose two linearly independent (a0, a1) vectors, then we will obtain
two linearly independent solutions y1(t) and y2(t).

First we consider a0 = 1 and a1 = 0. Observe that an = 0 then for all odd n. For even n, we compute

a0 = 1

a2 =
��
2

a4 =
4� �

4 · 3
��
2

a6 =
8� �

6 · 5
4� �

4 · 3
��
2

...

a2n =
2(2n� 2)� �

2n(2n� 1)

2(2n� 4)� �

(2n� 2)(2n� 3)
· · · 8� �

6 · 5
4� �

4 · 3
��
2

...

and thus we have

y1(t) = 1 +
1X

n=1

✓
2(2n� 2)� �

2n(2n� 1)

2(2n� 4)� �

(2n� 2)(2n� 3)
· · · 8� �

6 · 5
4� �

4 · 3
��
2

◆
t
2n

= 1 +
1X

n=1

(4(n� 1)� �)(4(n� 2)� �) · · · (4� �)(��)
(2n)!

t
2n

= 1 +
1X

n=1

 
n�1Y

k=0

(4k � �)

!
t
2n

(2n)!
.

Next, we consider a0 = 0 and a1 = 1. Observe that an = 0 for all even n. For odd n, we compute

a1 = 1

a3 =
2� �

3 · 2

a5 =
6� �

5 · 4
2� �

3 · 2

a7 =
10� �

7 · 6
6� �

5 · 4
2� �

3 · 2
...

a2n+1 =
2(2n� 1)� �

(2n+ 1)(2n)

2(2n� 3)� �

(2n� 1)(2n� 2)
· · · 10� �

7 · 6
6� �

5 · 4
2� �

3 · 2
...

and thus we have

y2(t) = t+
1X

n=1

✓
2(2n� 1)� �

(2n+ 1)(2n)

2(2n� 3)� �

(2n� 1)(2n� 2)
· · · 10� �

7 · 6
6� �

5 · 4
2� �

3 · 2

◆
t
2n+1
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= t+
1X

n=1

((4(n� 1) + 2)� �)((4(n� 2) + 2)� �) · · · (6� �)(2� �)

(2n+ 1)!
t
2n+1

= t+
1X

n=1

 
n�1Y

k=0

(4k + 2� �)

!
t
2n+1

(2n+ 1)!
.

Hence, our two linearly independent solutions of the Hermite equation are

y1(t) = 1 +
1X

n=1

 
n�1Y

k=0

(4k � �)

!
t
2n

(2n)!
and y2(t) = t+

1X

n=1

 
n�1Y

k=0

(4k + 2� �)

!
t
2n+1

(2n+ 1)!
.

Now, suppose that there is some n such that � = 2n. We observe from our recursion that for all k > 0,
an+2k = 0 because

a2n+2 =
2n� �

(n+ 2)(n+ 1)
an = 0

and thus a2n+4 = 0 = a2n+6 and so on. To ensure that a2n+k vanishes for odd k as well (and thus constructing
our desired Hermite polynomial), we make use of y1 and y2.

First, consider the trivial case n = 0. Then, � = 0 and any constant is a zero degree polynomial solving
y
00 � 2ty0 + �y = y

00 � 2ty0 = 0.

Next, suppose n is even, so that n = 2m for some m. Consider y1(t) and observe that for all n > m, the
product

Qn�1
k=0(4k��) has the term 4m�� = 2n�� = 0. Hence, every coe�cient on t

2n vanishes for n > m,
and thus y1(t) is a polynomial of degree 2m = n: properly normalized, it is the desired Hermite polynomial.

Finally, suppose n is odd, so that n = 2m+1 for some m. Consider y2(t) and observe that for all n > m, the
product

Qn�1
k=0(4k + 2� �) has the term 4m+ 2� � = 2(2m+ 1)� � = 2n� � = 0. Hence every coe�cient

on t
2n+1 vanishes for n > m, and thus y2(t) is a polynomial of degree 2m + 1 = n: properly normalized, it

is the desired Hermite polynomial.

So, we see that whenever � = 2n, the Hermite equation has a polynomial solution of degree n.
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7. Homework 7

Exercise 7.1 (2.8.1.7). Find the general solution of

t
2
y
00 + ty

0 + y = 0.

Sol.We observe that this is an Euler equation with ↵ = � = 1. Proposing solutions of the form y = t
r, we

observe that (r(r � 1) + r + 1)tr = 0, which requires r(r � 1) + r + 1 = 0. Equivalently,

r
2 + 1 = 0,

which has solutions r = ±i. Choosing r = i we find

t
i = e

i ln(t) = cos(ln(t)) + i sin(ln(t)).

Taking real and imaginary parts, we see that the general solution is

y(t) = a cos(ln(t)) + b sin(ln(t))

for constants a and b.

Exercise 7.2 (2.8.1.9). Solve the initial-value problem
8
><

>:

t
2
y
00 � ty

0 � 2y = 0;

y(1) = 0,

y
0(1) = 1

on the interval 0 < t < 1.

Sol.We observe that this is an Euler equation with ↵ = �1, � = �2. Proposing solutions of the form y = t
r,

we observe that (r(r � 1)� r � 2)tr = 0, which requires r(r � 1)� r � 2 = 0. Equivalently,

r
2 � 2r � 2 = 0,

which has solutions r = 2±
p
12

2 = 1±
p
3. Thus, the general solution is

y(t) = at
1+

p
3 + bt

1�
p
3

for constants a and b. Di↵erentiating, y0(t) = (1+
p
3)at

p
3+(1�

p
3)bt�

p
3. Matching our initial conditions,

we find

0 = y(1) = a+ b

1 = y
0(1) = a(1 +

p
3) + b(1�

p
3).

Thus, b = �a and a+ a
p
3� a+ a

p
3 = 2a

p
3 = 1 so a = 1

2
p
3
. We conclude that

y(t) =
1

2
p
3
t
1+

p
3 � 1

2
p
3
t
1�

p
3 =

t

2
p
3

✓
t

p
3 � 1

t

p
3

◆
.

Exercise 7.3 (2.8.2.1). Determine whether or not t = 0 is a regular singular point of the ODE

t(t� 2)2y00 + ty
0 + y = 0.

Sol. First, we renormalize the equation as

y
00 +

1

(t� 2)2
y
0 +

1

t(t� 2)2
y = 0.

Observe that t 1
(t�2)2 is analytic at t = 0, and t

2 1
t(t�2)2 = t

(t�2)2 is also analytic at t = 0. Hence, t = 0 is in
fact a regular singular point.
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Exercise 7.4 (2.8.2.5). Determine whether or not t = �1 is a regular singular point of the ODE

(1� t
2)y00 +

1

sin(t+ 1)
y
0 + y = 0.

Sol.We again renormalize the equation as

y
00 +

1

(1� t2) sin(t+ 1)
y
0 +

1

1� t2
y = 0.

Notice that

(t+ 1)
1

(1� t2) sin(t+ 1)
=

1

(1� t) sin(t+ 1)

has a singularity at t = �1 (since sin(�1 + 1) = sin(0) = 0), and is not analytic. Hence, t = �1 is not a
regular singular point of the equation.

Exercise 7.5 (2.8.2.7). Find the general solution of

2t2y00 + 3ty0 � (1 + t)y = 0.

Sol. Because of the t term on the y, we notice that this is not an Euler equation. However, the singular point
at t = 0 is still regular: normalizing the equation yields

y
00 +

3

2t
y
0 � 1 + t

2t2
y = 0.

Since t
3
2t = 3

2 and t
2�(1+t)

2t2 = � 1
2 (1 + t) are both analytic at t = 0, the singular point is regular. As such,

we proceed in confidence with the Frobenius method, proposing a solution of the form y =
P1

n=0 ant
n+r for

some fixed r to be determined. Di↵erentiating, we observe

y
0(t) =

1X

n=0

(n+ r)ant
n+r�1 =) 3ty0(t) =

1X

n=0

3(n+ r)ant
n+r

y
00(t) =

1X

n=0

(n+ r)(n+ r � 1)ant
n+r�2 =) 2t2y00(t) =

1X

n=0

2(n+ r)(n+ r � 1)ant
n+r

.

Furthermore,

(1 + t)y(t) = (1 + t)
1X

n=0

ant
n+r =

1X

n=0

ant
n+r +

1X

n=0

ant
n+r+1 =

1X

n=0

ant
n+r +

1X

n=1

an�1t
n+r

,

where we have reindexed the last sum. Hence, we require

0 = 2t2y00 + 3ty0 � (1 + t)y

=
1X

n=0

2(n+ r)(n+ r � 1)ant
n+r +

1X

n=0

3(n+ r)ant
n+r �

1X

n=0

ant
n+r �

1X

n=1

an�1t
n+r

= (2r(r � 1) + 3r � 1)a0t
r +

1X

n=1

((2(n+ r)(n+ r � 1) + 3(n+ r)� 1)an � an�1)t
n+r

.

Since all of the terms must vanish for the series to vanish everywhere, we first obtain the indicial equation

2r(r � 1) + 3r � 1 = 2r2 + r � 1 = (2r � 1)(r + 1) = 0

with solutions r = �1 and r = 1
2 . Each choice of r will yield a di↵erent linearly independent solution.
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Let’s start with r = �1 and choose a0 = 1. Then, we have

(2(n� 1)(n� 2) + 3(n� 1)� 1)an � an�1 = 0

and so

an =
an�1

2(n� 1)(n� 2) + 3(n� 1)� 1
=

an�1

2(n2 � 3n+ 2) + 3n� 3� 1
=

an�1

2n2 � 3n
=

an�1

n(2n� 3)

for n � 1. Thus, we obtain

a1 =
1

�1
= �1

a2 =
�1

2 · 1 = �1

2

a3 =
�1

2

1

3 · 3 =
�1

2 · 3
1

3

a4 =
�1

2 · 3
1

3

1

4 · 5 =
�1

2 · 3 · 4
1

3 · 5
...

an =
�1

2 · 3 · · · (n� 1)

1

3 · 5 · · · 2n� 5

1

n(2n� 3)
=

�1

n!

1

3 · 5 · · · (2n� 3)

...

and so

y1(t) =
1

t
� 1 +

1

t

1X

n=2

�1

n!

1

1 · 3 · · · (2n� 3)
t
n =

1

t

 
1� t�

1X

n=2

 
nY

k=2

1

2k � 3

!
t
n

n!

!
.

Next, we consider r = 1
2 and choose a0 = 1. Then, we have

✓
2

✓
n+

1

2

◆✓
n� 1

2

◆
+ 3

✓
n+

1

2

◆
� 1

◆
an � an�1 = 0

and so

an =
an�1

(2
�
n+ 1

2

� �
n� 1

2

�
+ 3

�
n+ 1

2

�
� 1

=
an�1

2n2 � 1
2 + 3n+ 3

2 � 1
=

an�1

2n2 + 3n
=

an�1

n(2n+ 3)

for n � 1. Thus, we obtain

a1 =
1

5

a2 =
1

5

1

2 · 7 =
1

2

1

5 · 7

a3 =
1

2

1

5 · 7
1

3 · 9 =
1

2 · 3
1

5 · 7 · 9
...

an =
1

2 · 3 · · · (n� 1)

1

5 · 7 · · · 2n+ 1

1

n(2n+ 3)
=

1

n!

1

5 · 7 · · · 2n+ 3

...

and so

y2(t) =
p
t+

p
t

1X

n=1

1

n!

1

5 · 7 · · · 2n+ 3
t
n =

p
t

 
1 +

1X

n=1

 
nY

k=1

1

2k + 3

!
t
n

n!

!
.
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Thus, the general solution for this equation is given by

y(t) =
c1

t

 
1� t�

1X

n=2

 
nY

k=2

1

2k � 3

!
t
n

n!

!
+ c2

p
t

 
1 +

1X

n=1

 
nY

k=1

1

2k + 3

!
t
n

n!

!
.

Exercise 7.6 (2.8.2.19). Consider the equation

t
2
y
00 + (t2 � 3t)y0 + 3y = 0. (4)

1. Show that r = 1 and r = 3 are the two roots of the indicial equation of (4).

2. Find a power series solution of (4) of the form

y1(t) = t
3

1X

n=0

ant
n
, a0 = 1.

3. Show that y1(t) = t
3
e
�t.

4. Show that (4) has no solution of the form

t

1X

n=0

bnt
n
.

5. Find a second solution of (4) using the method of reduction of order. Leave your answer in integral
form.

Proof. Let us consider the first point. This equation has a singular point at t = 0. It is not an Euler
equation, but if we renormalize it reads

y
00 +

✓
1� 3

t

◆
y
0 +

3

t2
y = 0.

Since t
�
1� 3

t

�
= t� 3 and t

2 3
t2 = 3 are both analytic at t = 0, we conclude that t = 0 is a regular singular

point. As such, we can proceed with confidence using the method of Frobenius, proposing a solution of the
form y(t) =

P1
n=0 ant

n+r to find the indicial equation. Di↵erentiating, we observe

y
0(t) =

1X

n=0

(n+ r)ant
n+r�1 =) (t2 � 3t)y0(t) =

1X

n=0

(n+ r)ant
n+r+1 �

1X

n=0

3(n+ r)ant
n+r

=
1X

n=1

(n� 1 + r)an�1t
n+r �

1X

n=0

3(n+ r)ant
n+r

y
00(t) =

1X

n=0

(n+ r)(n+ r � 1)ant
n+r�2 =) t

2
y
00(t) =

1X

n=0

(n+ r)(n+ r � 1)ant
n+r

,

where we have reindexed sums freely. Hence

0 = t
2
y
00 + (t2 � 3t)y0 + 3y

=
1X

n=0

(n+ r)(n+ r � 1)ant
n+r +

1X

n=1

(n� 1� r)an�1t
n+r �

1X

n=0

3(n+ r)ant
n+r +

1X

n=0

3ant
n+r

= (r(r � 1)� 3r + 3)a0t
r +

1X

n=1

(((n+ r)(n+ r � 1)� 3(n+ r) + 3)an + (n� 1 + r)an�1)t
n+r

.
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Since all of the terms must vanish for the series to vanish everywhere, we obtain the indicial equation

r(r � 1)� 3r + 3 = 0 = r
2 � 4r + 3 = (r � 1)(r � 3)

with solutions r = 1 and r = 3, as desired.

The second point requires us to choose r = 3 and a0 = 1 to find a solution of the form y1(t) =
P1

n=0 ant
n+r =

t
r
P

n=0 ant
n = t

3
P1

n=0 ant
n with a0 = 1. Plugging in r = 3, we require for all n � 1 that

((n+ 3)(n+ 2)� 3(n+ 3) + 3)an + (n+ 2)an�1 = 0

and so

an =
�(n+ 2)an�1

(n+ 3)(n+ 2)� 3(n+ 3) + 3
=

�(n+ 2)an�1

n2 + 5n+ 6� 3n� 9 + 3
=

�(n+ 2)an�1

n2 + 2n
=

�(n+ 2)an�1

n(n+ 2)
=

�an�1

n

for n � 1. Thus, we see that

a0 = 1

a1 = �1

a2 =
1

2

a3 =
�1

2 · 3
...

an =
(�1)n�1

2 · 3 · · · (n� 1)

�1

n
=

(�1)n

n!

...

so that y1(t) = t
3
P1

n=0
(�1)ntn

n! = t
3
P1

n=0
(�t)n

n! .

For the third point of this question, we recognize the Taylor series for ex in the above and see that y1(t) =
t
3
e
�t.

For the fourth point of this question, we need to show that there is no solution of the form t
P1

n=0 bnt
n.

This would correspond to choosing r = 1 in
P1

n=0 bnt
n+r = t

r
P

n=0 bnt
n = t

P1
n=0 bnt

n. Substituting r = 1
into the series expansion above, we would need

((n+ 1)(n)� 3(n+ 1) + 3)an + nan�1 = 0

and so

an =
�nan�1

(n+ 1)n� 3(n+ 1) + 3
=

�nan�1

n2 + n� 3n� 3 + 3
=

�nan�1

n2 � 2n
=

�nan�1

n(n� 2)
=

�an�1

n� 2

for all n � 1. Since this recursion relation becomes degenerate at n = 2, no such solution is possible and as
such the Frobenius method only gives us a solution y1(t) = t

3
e
�t.

Towards the fifth point of this question, we use the method of reduction of order to construct a second linearly
independent solution y2(t). Proposing a solution of the form y2(t) = y1(t)v(t), we find di↵erentiating that
y
0
2 = y

0
1v + y1v

0 and so y
00
2 = y

00
1 v + 2y01v

0 + y1v
00. Plugging these into the equation and grouping like terms

of v, we find

0 = t
2
y
00
2 + (t2 � 3t)y02 + 3y2

= t
2(y001 v + 2y01v

0 + y1v
00) + (t2 � 3t)(y01v + y1v

0) + 3y1v

= v(t2y001 + (t2 � 3t)y01 + 3y1) + v
0(2t2y01 + (t2 � 3t)y1) + t

2
y1v

00
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= v
0(2t2y01 + (t2 � 3t)y1) + t

2
y1v

00

= w(2t2y01 + (t2 � 3t)y1) + w
0(t2y1)

with w = v
0, since y1 solves (4). Recalling y1(t) = t
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for t > 0. This is a separable first order ODE! We have, making all of our integration constants trivial by
choice,
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s3 is a second linearly independent solution.
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