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ABSTRACT

Figure S1 shows the climatological zonal mean zonal wind in STAT and
AQUASO. Figure S2 shows the zonal wind at 850hPa response to ozone de-
pletion in STAT and AQUARSO. Figure S3 shows the Eliassen-Palm flux di-
vergence response to ozone depletion in AQUASO and STAT, while Figure
S7 is similar but for a stratospheric diabatic cooling perturbation. Figure S4
shows the climatological Eliassen-Palm flux for reference. The main body
documents some aspects of the response when an ozone hole is placed in the
Northern Hemisphere, and Figure S5 shows more. Figure S6 shows the trans-
formed Eulerian mean momentum budget for AQUAS8O. Figure S8 shows the
response to ozone when the jet latitude is pushed poleward for the AQUASO

configuration.
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Fig. S2. Zonal wind response [hole - PI] at 850hPa in STAT and AQUASO.
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