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ABSTRACT

Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We

address the problem of forecasting rare events in a prototypical example, Sudden Stratospheric

Warmings (SSWs). Approximately once every other winter, the boreal stratospheric polar vortex

rapidly breaks down, shifting midlatitude surface weather patterns for months. We focus on two

key quantities of interest: the probability of an SSW occurring, and the expected lead time if it does

occur, as functions of initial condition. These optimal forecasts concretely measure the event’s

progress. Direct numerical simulation can estimate them in principle, but is prohibitively expensive

in practice: each rare event requires a long integration to observe, and the cost of each integration

grows with model complexity. We describe an alternative approach using integrations that are

short compared to the timescale of the warming event. We compute the probability and lead time

efficiently by solving equations involving the transition operator, which encodes all information

about the dynamics. We relate these optimal forecasts to a small number of interpretable physical

variables, suggesting optimal measurements for forecasting. We illustrate the methodology on a

prototype SSW model developed by Holton and Mass (1976) and modified by stochastic forcing.

While highly idealized, this model captures the essential nonlinear dynamics of SSWs and exhibits

the key forecasting challenge: the dramatic separation in timescales between a single event and

the return time between successive events. Our methodology is designed to fully exploit high-

dimensional data from models and observations, and can identify detailed predictors of many

complex rare events in meteorology.
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1. Introduction32

As computing power increases andweather models growmore intricate and capable of generating33

a vast wealth of realistic data, the goal of extreme weather event prediction appears less distant34

(Vitart and Robertson 2018). To take full advantage of the increased computing power, we must35

develop new approaches to efficiently manage and parse the data we generate (or observe) to36

derive physically interpretable, actionable insights. Extreme weather events are worthy targets37

for simulation owing to their destructive potential to life and property. Rare events have attracted38

significant simulation efforts recently, including hurricanes (e.g., Zhang and Sippel 2009; Webber39

et al. 2019; Plotkin et al. 2019), heat waves (e.g., Ragone et al. 2018), rogue waves (e.g., Dematteis40

et al. 2018), and space weather events (e.g., coronal mass ejections; Ngwira et al. (2013)). These41

are very difficult to characterize and predict, being exceptionally rare and pathological outliers42

in the spectrum of weather events. Ensemble forecasting in numerical weather prediction is best43

suited to estimate statistics of the average or most likely scenarios, and specialized methods are44

needed to examine the more extreme outlier scenarios.45

In this study, we advance an alternative computational approach to predicting and understanding46

general rare events without sacrificing model fidelity. Our method relies on data generated by a47

high-fidelity model with a state space with many degrees of freedom 3, representing, for example,48

spatial resolution of the primitive equations. In thisway, ourmethod is similar to recently introduced49

reduced order modeling techniques using statistical and machine learning (e.g., Kashinath et al.50

(2021) and references therein). However, in contrast to other data-driven techniques, our approach51

focuses on directly computing key quantities of interest that characterize the essential predictability52

of the rare event, rather than trying to capture the full detailed evolution of the system. In particular,53

we will compute estimators of statistically optimal forecasts that are useful for initial conditions54
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somewhere between a “typical” configuration � and an “anomalous” configuration � that defines55

the rare event, where typical and anomalous are user-defined. We focus on two forecasts in56

particular to quantify risk. The committor is the probability that a given initial condition evolves57

directly into � rather than �. Given that it does reach � first, the conditional mean first passage58

time, or lead time, is the expected time that it takes to get there. The committor appears prominently59

in the molecular dynamics literature, with some recent applications in geoscience including Tantet60

et al. (2015); Lucente et al. (2019), and Finkel et al. (2020), which compute the committor for61

low-dimensional atmospheric models.62

Both quantities depend on the initial condition, defining functions over 3-dimensional state space63

that encode important information regarding the fundamental causes and precursors of the rare64

event. However, “decoding” the physical insights is not automatic. With real-time measurement65

constraints, the risk metrics must be estimated from low-dimensional proxies. Even visualizing66

them requires projecting down to one or two dimensions. This calls for a principled selection of67

low-dimensional coordinates which are both physically meaningful and statistically informative68

for our chosen risk metrics. We address this problem using sparse regression, a simple but easily69

extensible solution with the potential to inform optimal measurement strategies to estimate risk as70

precisely as possible under constraints.71

Estimation of the committor and lead time is a challenge. We employ a method that uses72

a large data set of short-time independent simulations. We represent the committor and lead73

time as solutions to Feynman-Kac formulae (Oksendal 2003), which relate long-time forecasts to74

instantaneous tendencies. These equations are elegant and general, but computationally daunting:75

in the continuous time and space limit, they become partial differential equations (PDE) with 376

independent variables—the same as the model state space dimension. It is therefore hopeless to77

solve the equations using any standard spatial discretization. But, as we demonstrate, the equations78
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can be solved with remarkable accuracy by expanding in a basis of functions informed by the data79

set.80

We illustrate our approach on the highly simplified Holton-Mass model (Holton and Mass81

1976; Christiansen 2000) with stochastic velocity perturbations in the spirit of Birner andWilliams82

(2008). The Holton-Mass model is well-understood dynamically in light of decades of analysis and83

experiments, yet complex enough to present the essential computational difficulties of probabilistic84

forecasting and test our methods for addressing them. In particular, this system captures the85

key difficulty in sampling rare events. The vast majority of the time, the system sits in one of86

two metastable states, characterizing a strong or weak vortex respectively. Extreme events are87

the infrequent jumps from one state to another. Our computational framework can accurately88

characterize these rare transitions using only a data set of “short” model simulations, short not89

only compared to the long periods the system sits in one state or the other, but also relative to90

the timescale of the transition events themselves. In the future, the same methodology could be91

applied to query the properties of more complex models, such as GCMs, where less theoretical92

understanding is available.93

In section 2, we review the dynamical model and define the specific rare event of interest. In94

section 3, we formally define the risk metrics introduced above and visualize the results for the95

Holton-Mass model, including a discussion of physical and practical insights gleaned from our96

approach. In section 4 we identify an optimal set of reduced coordinates for estimating risk using97

sparse regression. These results will provide motivation for the computational method, which we98

present afterward in section 5 along with accuracy tests. We then lay out future prospects and99

conclude in section 6.100

5



2. Holton-Mass model101

Holton and Mass (1976) devised a simple model of the stratosphere aimed at reproducing102

observed intra-seasonal oscillations of the polar vortex, which they termed “stratospheric vacil-103

lation cycles.” Earlier SSW models, originating with that of Matsuno (1971), proposed upward-104

propagating planetary waves as the major source of disturbance to the vortex. While Matsuno105

(1971) used impulsive forcing from the troposphere as the source of planetary waves, Holton106

and Mass (1976) suggested that even stationary tropospheric forcing could lead to an oscillatory107

response, suggesting that the stratosphere can self-sustain its own oscillations. While the Holton-108

Mass model is meant to represent internal stratospheric dynamics, Sjoberg and Birner (2014) point109

out that the stationary boundary condition does not lead to stationary wave activity flux, meaning110

that even the Holton-Mass model involves some dynamic interaction between the troposphere and111

stratosphere. Isolating internal from external dynamics is a subtle modeling question, but in the112

present paper we adhere to the original Holton-Mass framework for simplicity. Our methodology113

applies equally well to other formulations.114

Radiative cooling through the stratosphere and wave perturbations at the tropopause are the two115

competing forces that drive the vortex in the Holton-Mass model. Altitude-dependent cooling116

relaxes the zonal wind toward a strong vortex in thermal wind balance with a radiative equilibrium117

temperature field. Gradients in potential vorticity along the vortex, however, can allow the propaga-118

tion of Rossby waves. When conditions are just right, a Rossby wave emerges from the tropopause119

and rapidly propagates upward, sweeping heat poleward and stalling the vortex by depositing a120

burst of negative momentum. The vortex is destroyed and begins anew the rebuilding process.121

Yoden (1987a) found that for a certain range of parameter settings, these two effects balance each122

other to create two distinct stable regimes: a strong vortex with zonal wind close to the radiative123

6



equilibrium profile, and a weak vortex with a possibly oscillatory wind profile. We focus our study124

on this bistable setting as a prototypical model of atmospheric regime behavior. The transition125

from strong to weak vortex state captures the essential dynamics of an SSW.126

The Holton-Mass model takes the linearized quasigeostrophic potential vorticity (QGPV) equa-127

tion for a perturbation streamfunction k′(G, H, I, C) on top of a zonal mean flow D(H, I, C), and128

projects these two fields onto a single zonal wavenumber : = 2/(0 cos60◦) and a single meridional129

wavenumber ℓ = 3/0, where 0 is the Earth’s radius. This notation is consistent with Holton and130

Mass (1976) and Christiansen (2000), and we refer the reader to these earlier papers for complete131

description of the equations and parameters. The resulting ansatz is132

D(H, I, C) =* (I, C) sin(ℓH) (1)

k′(G, H, I, C) = Re{Ψ(I, C)48:G}4I/2� sin(ℓH)

which is fully determined by the reduced state space* (I, C), and Ψ(I, C), the latter being complex-133

valued. � is a scale height, 7 km. Inserting this into the linearized QGPV equations yields the134

coupled PDE system135 [
−
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138
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is a constant stratification (Brunt-Väisälä frequency), 50 is the Coriolis parameter, and ! = 2.5×105
139

m is a horizontal length scale, selected in order to create a homogeneously shaped data set more140

suited to our analysis. See Holton andMass (1976); Yoden (1987a); Christiansen (2000) for details141

on parameters. Boundary conditions are prescribed at the bottom of the stratosphere, which in this142

model corresponds to I = 0 km, and the top of the stratosphere IC>? = 70 km.143

Ψ(0, C) = 6ℎ
50
, Ψ(IC>?, C) = 0, (4)

* (0, C) =*' (0), mI* (IC>?, C) = mI*' (IC>?).

The vortex-stabilizing influence is represented by U(I), the altitude-dependent cooling coefficient,144

and the radiative wind profile*' (I) =*' (0) + W

1000 I (with I in m), which relaxes the vortex toward145

radiative equilibrium. Here W = O(1) is the vertical wind shear in m/s/km. The competing force146

of wave perturbation is encoded through the lower boundary condition Ψ(0, C) = 6ℎ/ 50.147

Detailed bifurcation analysis of the model by both Yoden (1987a) and Christiansen (2000) in148

(W, ℎ) space revealed the bifurcations that lead to bistability, vacillations, and ultimately quasiperi-149

odicity and chaos. Here we will focus on an intermediate parameter setting of W = 1.5 m/s/km150

and ℎ = 38.5 m, where two stable states coexist: a strong vortex with * closely following *' and151

an almost barotropic stationary wave, as well as a weak vortex with * dipping close to zero at152

an intermediate altitude and a stationary wave with strong westward phase tilt. The two stable153

equilibria, which we call a and b, are illustrated in Figure 1(a,b) by their I-dependent zonal wind154

and perturbation streamfunction profiles.155

The two equilibria can be interpreted as two different winter climatologies, one with a strong156

vortex and one with a weak vortex susceptible to vacillation cycles. To explore transitions between157

these two states, we follow Birner and Williams (2008) and modify the Holton-Mass equations158

with small additive noise in the * variable to mimic momentum perturbations by smaller scale159
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Rossby waves, gravity waves, and other unresolved sources. The form of noise will be specified in160

Equation (7).161

While the details of the additive noise are ad hoc, the general approach can be more rigorously162

justified through the Mori-Zwanzig formalism (Zwanzig 2001). Because many hidden degrees163

of freedom are being projected onto the low-dimensional space of the Holton-Mass model, the164

dynamics on small observable subspaces can be considered stochastic. This is the perspective165

taken in stochastic parameterization of turbulence and other high-dimensional chaotic systems166

(Hasselmann 1976;DelSole and Farrell 1995; Franzke andMajda 2006;Majda et al. 2001;Gottwald167

et al. 2016). In general, unobserved deterministic dynamics can make the system non-Markovian,168

which technically violates the assumptions of ourmethodology. However, with sufficient separation169

of timescales the Markovian assumption is not unreasonable. Furthermore, memory terms can170

be ameliorated by lifting data back to higher-dimensional state space with time-delay embedding171

(Berry et al. 2013; Thiede et al. 2019; Lin and Lu 2021).172

We follow Holton and Mass (1976) and discretize the equations using a finite-difference method173

in I, with 27 vertical levels (including boundaries). After constraining the boundaries, there are174

3 = 3× (27− 2) = 75 degrees of freedom in the model. Christiansen (2000) investigated higher175

resolution and found negligible differences. The full discretized state is represented by a long176

vector177

X(C) =
[
Re{Ψ}(ΔI, C), . . . ,Re{Ψ}(IC>? −ΔI, C),

Im{Ψ}(ΔI, C), . . . , Im{Ψ}(IC>? −ΔI, C), (5)

* (ΔI, C), . . . ,* (IC>? −ΔI, C)
]
∈ R3 = R75

The deterministic system can be written 3X(C)/3C = v(X(C)) for a vector field v :R3→R3 specified178

by discretizing (2) and (3). Under deterministic dynamics, X(C) → a or X(C) → b as C → ∞179
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depending on initial conditions. The addition of white noise changes the system into an Itô180

diffusion181

3X(C) = v(X(C)) 3C +2(X(C)) 3W(C) (6)

where 2 : R3 → R3×< imparts a correlation structure to the vector W(C) ∈ R< of independent182

standard white noise processes. As discussed above, we design 2 to be a low-rank, constant matrix183

that adds spatially smooth stirring to only the zonal wind* (not the streamfunction Ψ) and which184

respects boundary conditions at the bottom and top of the stratosphere. Its structure is defined185

by the following Euler-Maruyama scheme: in a timesetep XC = 0.005 days, after a deterministic186

forward Euler step we add the stochastic perturbation to zonal wind on large vertical scales187

X* (I) = f*
<∑
:=0

[: sin
[(
: + 1

2

)
c
I

IC>?

]√
XC (7)

where [: (: = 0,1,2) are independent unit normal samples, < = 2, and f* is a scalar that sets the188

magnitudes of entries in 2. In terms of physical units,189

f2
* =
E[(X*)2]

XC
≈ (1m/s)2/day (8)

f* has units of (!/))/)1/2, where the square-root of time comes from the quadratic variation of the190

Wiener process. It is best interpreted in terms of the daily root-mean-square velocity perturbation191

of 1.0 m/s. We have experimented with this value, and found that reducing the noise level below192

0.8 dramatically reduces the frequency of transitions, while increasing it past 1.5 washes out193

metastability. We keep f* constant going forward as a favorable numerical regime to demonstrate194

our approach, while acknowledging that the specifics of stochastic parameterization are important195

in general to obtain accurate forecasts. The resulting matrix 2 is 75×3, with nonzero entries only196

in the last 25 rows as forcing only applies to* (I).197

A long simulation of the model reveals metastability, with the system tending to remain close to198

one fixed point for a long time before switching quickly to the other, as shown by the time series199
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of * (30km) in panel (d) of Figure 1. Panel (e) shows a projection of the steady state distribution,200

also known as the equilibrium/invariant distribution, of * as a function of I. We call this density201

c(x), which is a function over the full 3-dimensional state space. We focus on the zonal wind202

* at 30 km following Christiansen (2000), because this is where its strength is minimized in the203

weak vortex. While the two regimes are clearly associated with the two fixed points, they are better204

characterized by extended regions of state space with strong and weak vortices. We thus define the205

two metastable subsets of R3206

� = {X :* (X) (30km) ≥ * (a) (30km) = 53.8m/s},

� = {X :* (X) (30km) ≤ * (b) (30km) = 1.75m/s}.

This straightforward definition roughly follows the convention of Charlton and Polvani (2007),207

which defines an SSW as a reversal of zonal winds at 10 hPa. We use 30 km for consistency with208

Christiansen (2000); this is technically higher than 10 hPa because I = 0 in the Holton-Mass model209

represents the tropopause. Our method is equally applicable to any definition, and the results210

are not qualitatively dependent on this choice. Incidentally, the analysis tools we present may be211

helpful in distinguishing predictability properties between different definitions. In fact, we will212

show that the height neighborhood of 20 km is actually more salient for predicting the event than213

wind at the 30-km level, even when the event is defined by wind at 30 km! This emerges from214

statistical analysis alone, and gives us confidence that essential SSW properties are stable with215

respect to reasonable changes in definition.216

The orange highlights in Figure 1 (d) begin when the system exits the � region bound for �,217

and end when the system enters �. The green highlights start when the system leaves � bound218

for �, and end when � is reached. Note that �→ � transitions, SSWs, are much shorter in219

duration than �→ � transitions. Figure 1 (c) shows the same paths, but viewed parametrically220
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in a two-dimensional state space consisting of integrated heat flux or IHF
∫ 30km
0 km 4−I/�E′) ′ 3I, and221

zonal wind*(30 km). IHF is an informative number because it captures both magnitude and phase222

information of the streamfunction in the Holton-Mass model:223

IHF =
∫ 30 km

0 km
4−I/�E′) ′ 3I ∝

∫ 30 km

0 km
|Ψ|2 mi

mI
3I (9)

where i is the phase of Ψ. The �→ � and �→ � transitions are again highlighted in orange224

and green respectively, showing geometrical differences between the two directions. We will225

refer to the �→ � transition as an SSW event, even though it is more accurately a transition226

between climatologies according to the Holton-Mass interpretation. The �→ � transition is a227

vortex restoration event. Our focus in this paper is on predicting these transition events (mainly the228

�→ � direction) and monitoring their progress in a principled way. In the next section we explain229

the formalism for doing so.230

3. Forecast functions: the committor and lead time statistics231

a. Defining risk and lead time232

We will introduce the quantities of interest by way of example. First, suppose the stratosphere is233

observed in an initial state X(0) = x that is neither in � nor �, so * (b) (30km) < * (x) (30km) <234

* (a) (30km) and the vortex is somewhat weakened, but not completely broken down. We call this235

intermediate zone � = (�∪ �)c (the complement of the two metastable sets). Because � and �236

are attractive, the system will soon find its way to one or the other at the first-exit time from �,237

denoted238

g�c =min{C ≥ 0 : X(C) ∈ �c} (10)

Here, �c emphasizes that the process has left �, i.e., gone to � or �. The first-exit location239

X(g�c) is itself a random variable which importantly determines how the system exits �: either240
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X(g�c) ∈ �, meaning the vortex restores to radiative equilibrium, or X(g�c) ∈ �, meaning the241

vortex breaks down into vacillation cycles. A fundamental goal of forecasting is to determine the242

probabilities of these two events, which naturally leads to the definition of the (forward) committor243

function244

@+(x) =



Px{X(g�c) ∈ �} x ∈ � = (�∪�)c

0 x ∈ �

1 x ∈ �

(11)

where the subscript x indicates that the probability is conditional on a fixed initial condition245

X(0) = x, i.e., Px{·} = P{·|X(0) = x}. The superscript “+” distinguishes the forward committor246

from the backward committor, an analogous quantity for the time-reversed process which we do247

not use in this paper. Throughout, we will use capital X(C) to denote a stochastic process, and248

lower-case x to represent a specific point in state space, typically an initial condition, i.e., X(0) = x.249

Both are 3 = 75-dimensional vectors.250

The committor is the probability that the system will be in state � (the disturbed state) next rather251

than � (the strong vortex state). Hence @+(x) = 0 if you start in �, and is 1 if you are already in �.252

In between (i.e., when x ∈ �), @+(x) tells you the probability that you will first go to � rather than253

to �. That is, @+(x) tells you the probability that an SSW will happen.254

Another important forecasting quantity is the lead time to the event of interest. While the forward255

committor reveals the probability of experiencing vortex breakdown before returning to a strong256

vortex, it does not say how long either event will take. Furthermore, even if the vortex is restored257

first, how long will it be until the next SSW does occur? The time until the next SSW event is258

denoted g�, again a random variable, whose distribution depends on the initial condition x. We259

call Ex [g�] the mean first passage time (MFPT) to �. Conversely, we may ask how long a vortex260
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disturbance will persist before normal conditions return; the answer (on average) is Ex [g�], the261

mean first passage time to �. These same quantities have been calculated previously in other262

simplified models, e.g. Birner and Williams (2008) and Esler and Mester (2019).263

Ex [g�] has an obvious shortcoming: it is an average over all paths starting from x, including those264

which go straight into � (i.e., an orange trajectory in Figure 1c,d) and the rest which return to � i.e.,265

a green trajectory) and linger there, potentially for a very long time, before eventually re-crossing266

back into �. It is more relevant for near-term forecasting to condition g� on the event that an SSW267

is coming before the strong vortex returns. For this purpose, we introduce the conditional mean268

first passage time, or lead time, to �:269

[+(x) := Ex [g� |g� < g�] (12)

which quantifies the suddenness of SSW.270

All of these quantities can, in principle, be estimated by direct numerical simulation, or shooting.271

For example, suppose we observe an initial condition X(0) = x in an operational forecasting272

setting, and wish to estimate the probability and lead time for the event of next hitting �. We would273

initialize an ensemble {X= (0) = x, = = 1, . . . , #} and evolve each member forward in time until it274

hits � or � at the random time g=. In an explicitly stochastic model, random forcing would drive275

each member to a different fate, while in a deterministic model their initial conditions would be276

perturbed slightly. To estimate the committor to �, we could calculate the fraction of members277

that hit � first. Averaging the arrival times (g=), over only those members gives an estimate of the278

lead time to �. For a single initial condition x reasonably close to �, this direct shooting method279

may be the most economical. But how do we systematically compute @+(x) over all of state space280

(here 75 variables, but potentially billions of variables in a GCM or other state-of-the-art forecast281

system)?282
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For thismore ambitious goal, the direct shootingmethod is prohibitively expensive. By definition,283

transitions between � and � are infrequent. Therefore, if starting from x far from �, a huge number284

of sampled trajectories (#) will be required to observe even a small number ending in �, and they285

may take a long time to get there. If instead we could precompute these functions offline over all286

of state space, the online forecasting problem would reduce to “reading off” the committor and287

lead time with every new observation. Achieving this goal is the key point of our paper, and we288

achieve this using the dynamical Galerkin approximation, or DGA, recipe described by Thiede289

et al. (2019).290

A brute force way to estimate these functions is to integrate the model for a long time until291

it reaches statistical steady state, meaning it has explored its attractor thoroughly according to292

the steady state distribution. After long enough, it will have wandered close to every point x293

sufficiently often to estimate @+(x) and [+ robustly as in shooting. We have performed such a294

“control simulation” of 5× 105 days for validation purposes, but our main contribution in this295

paper is to compute the forecast functions using only short trajectories with DGA, allowing for296

massive parallelization. However, we will defer the methodological details to Section 5, and first297

justify the effort with some results. We visualize the committor and lead time computed from short298

trajectories and elaborate on their interpretation, utility, and relationship to ensemble forecasting299

methods.300

b. Steady state distribution301

Before visualizing the committor and lead time, it will be helpful to have a precise notion of the302

steady state distribution, denoted c(x), a probability density that describes the long-term behavior303

of a stochastic process X(C). Assuming the system is ergodic, averages over time are equivalent to304
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averages over state space with respect to c. That is, for any well-behaved function 6 : R3→ R,305

lim
)→∞

1
)

∫ )

0
6(X(C)) 3C =

∫
R3
6(x)c(x) 3x =: 〈6〉c (13)

For example, if 6(x) = 1( (x) (an indicator function, which is 1 for x ∈ ( ⊂ R3 and 0 for x ∉ (),306

Equation (13) says that the fraction of time spent in ( can be found by integrating the density307

over (. The density peaks in Figure 1(d) indicates clearly that the neighborhoods of a and b308

are two such regions with especially large probability under c. Note that both sides of (13) are309

independent of the initial condition, which is forgotten eventually. Short-term forecasts are by310

definition out-of-equilibrium processes, depending critically on initial conditions; however, c(x)311

is important to us here as a “default” distribution for missing information. If the initial condition is312

only partially observed, e.g. in only one coordinate, we have no information about the other 3 −1313

dimensions, and in many cases the most principled tactic is to assume those other dimensions are314

distributed according to c, conditional on the observation.315

c. Visualizing committor and lead times316

The forecasts @+(x) and [+(x) are functions of a high-dimensional space R3 . However, these317

degrees of freedommay not all be “observable” in a practical sense, given the sparsity and resolution318

limits of weather sensors, and visualizing them requires projecting onto reduced-coordinate spaces319

of dimension 1 or 2. We call these “collective variables” (CVs) following chemistry literature320

(e.g., Noé and Clementi 2017), and denote them as vector-valued functions from the full state321

space to a reduced space, ) : R3 → R: , where : = 1 or 2. For instance, Figure 1 (c) plots322

trajectories in the CV space consisting of integrated heat flux and zonal wind at 30 km: ) (x) =323 ( ∫ 30km
0 km 4−I/�E′) ′ 3I,* (30km)

)
. The first component is a nonlinear function involving products324

of Re{Ψ} and Im{Ψ}, while the second component is a linear function involving only* at a certain325
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altitude. For visualization in general, we have to approximate a function � : R3 → R, such as the326

committor or lead time, as a function of reduced coordinates. That is, we wish to find 5 : R: → R327

such that � (x) ≈ 5 () (x)). Given a fixed CV space ) , an “optimal” 5 is chosen by minimizing328

some function-space metric between 5 ◦ ) and �.329

A natural choice is the mean-squared error weighted by the steady state distribution c, so the330

projection problem is to minimize over functions 5 : R: → R the penalty331

([ 5 ;)] : = ‖ 5 ◦ ) −�‖2
!2 (c)

=

∫
R3

[
5 () (x)) −� (x)

]2
c(x) 3x. (14)

The optimal 5 for this purpose is the conditional expectation332

5 (y) = EX∼c [� (X) |) (X) = y]

= lim
|3y|→0

∫
5 (x)13y() (x))c(x) 3x∫
13y() (x))c(x) 3x

(15)

where 3y is a small neighborhood about y in CV space ': . The subscript X ∼ c means that the333

expectation is with respect to a random variable X distributed according to c(x), i.e., at steady334

state. Figure 2 uses this formula to display one-dimensional projections of the committor (first row)335

and lead time (second row), as well as the one-standard deviation envelope incurred by projecting336

out the other 74 degrees of freedoom. This “projection error” is defined as the square root of the337

conditional variance338

+ [ 5 ] (y) = EX∼c
[(
� (X) − 5 (y)

)2���) (X) = y
]
. (16)

Each quantity is projected onto two different one-dimensional CVs: * (30 km) (first column) and339

IHF (second column). In panel (a), for example, we see the committor is a decreasing function340

of *: the weaker the wind, the more likely a vortex breakdown. Moreover, the curve provides a341

conversion factor between risk (as measured by probability) and a physical variable, zonal wind.342
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An observation of * (30 km) = 38 m/s implies a 50% chance of vortex breakdown. The variation343

in slope also tells us that a wind reduction from 40 m/s to 30 m/s represents a far greater increase344

in risk than a reduction from 30 m/s to 20 m/s. Meanwhile, panel (b) shows the committor to be345

an increasing function of IHF, since SSW is associated with large wave amplitude and phase lag.346

However, IHF seems inferior to zonal wind as a committor proxy, as a small change in IHF from347

∼ 0.005 to ∼ 0.01 corresponds to a sharp increase in committor from nearly zero to nearly one.348

In other words, knowing only IHF doesn’t provide much useful information about the threat of349

SSW until it is already virtually certain. The dotted envelope is also wider in panel (b) than (a),350

indicating that projecting the committor onto IHF removes more information than projecting onto351

*. While the underlying noise makes it impossible to divine the outcome with certainty from any352

observation, the projection error clearly privileges some observables over others for their predictive353

power.354

In panels (c) and (d), the lead time is seen to have the opposite overall trend as the committor: the355

weaker the wind, or the greater the heat flux, the closer you are on average to a vortex breakdown.356

[+(x) is not defined when wind is strongest, as x ∈ � and so @+(x) = 0. However, an interesting357

exception to the trend occurs in the range 10 km ≤* ≤ 40 km: the expected lead time stays constant358

or slightly decreases as zonal wind increases, and the projection error remains large. This means359

that while the probability of vortex breakdown increases rapidly from 50% to 90%, the time until360

vortex breakdown remains highly uncertain. To resolve this seeming paradox, we will have to361

visualize the joint variation of @+ and [+.362

It is of course better to consider multiple observables at once. Figure 3 shows the information363

gained beyond observing* (30 km) by incorporating IHF as a second observable. In the top rowwe364

project c, @+, and [+ onto the two-dimensional subspace, revealing structure hidden from view in365

the one-dimensional projections. Panel (a) is a 2-dimensional extension of Figure 1(d), with density366
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peaks visible in the neighborhoods of a and b. The white space surrounding the gray represents367

physically insignificant regions of state space that was not sampled by the long simulation. The368

same convention holds for the following two-dimensional figures. The committor is displayed in369

panel (b) over the same space. It changes from blue at the top (an SSW is unlikely) to red at370

the bottom (an SSW is likely), bearing out the negative association between * and @+. However,371

there are non-negligible horizontal gradients that show that IHF plays a role, too. Likewise, the372

lead time in panel (c) decreases from ∼ 90 days near a to 0 days near b, when the transition is373

complete. Here, IHF appears even more critically important for forecasting how the event plays374

out, as gradients in [+ are often completely horizontal.375

A horizontal dotted line in Figure 3(a-c) marks the 50% risk level * (30 km) = 38 m/s, but the376

committor varies along it from low risk at the left to high risk at the right: we show this concretely377

by selecting two points )0 and )1 along the line. According to * alone, i.e., the curve in Figure378

2(a), both would have the same committor of 0.5. According to both * and IHF together, i.e., the379

two-dimensional heat map in Figure 3(b), they have very different probabilities of @+()0) = 0.37380

and @+()1) = 0.65: an SSW is nearly twice as likely to occur from starting point )1 as )0.381

While those committor values come from the DGA method to be described in Section 5, we382

confirm them empirically by plotting an ensemble of 100 trajectories originating from each of the383

two initial conditions in panels (d) and (e) below, coloring �-bound trajectories blue and �-bound384

trajectories red. Only 30% of the sampled trajectories through )0 exhibit an SSW, next going to385

state �, while 63% of the integrations from )1 end at �. In both cases, the heatmaps and ensemble386

sample means roughly match. The small differences between the projected committor and the387

empirical “success” rate of trajectories arises both from errors in the DGA calculation (which we388

analyze in section 5) and the finite size of the ensemble.389

19



The lead time prediction is improved similarly by incorporating the second observable. According390

to* alone, Figure 2 predicts a lead time of 40 days for both )0 and )1. Considering IHF additionally,391

the two-dimensional heat map in Figure 3 predicts a lead time of 47 days and 28 days for )0 and392

)1, respectively. Referring to the ensemble from )1 in panels (d) and (e), the arrival times of red393

trajectories to � provide a discrete sampling of the lead time distributions of g� |g� < g�. The394

sample means are 50 and 32 days respectively from )0 and )1, again roughly matching with our395

predictions.396

These two-dimensional projections still leave out 73 remaining dimensions, which we could397

incorporate to make the forecasts even better. After accounting for all 75 dimensions, we would398

obtain the full committor function @+ : R3→ R. This is still a probability, i.e., an expectation over399

the unresolved turbulent processes and uncertain initial condition. Low-dimensional committor400

projections simply treat the projected-out dimensions as random variables sampled according to401

c. Whether projected to a space of 1 or 75 dimensions, the committor is the function of that space402

that is closest, in the mean-square sense, to the binary indicator 1� (X(g)); this is the defining403

characteristic of conditional expectation (Durrett 2013). In the case that the system does hit � next,404

the lead time is closest in the mean-square sense to g�.405

While high-dimensional systems offer many coordinates to choose from, we argue that the406

committor and lead time are the most important nonlinear coordinates to monitor for forecasting407

purposes. We will explore their relationship in the next subsection. Although both encode some408

version of proximity to SSW, they are independent variables which deserve separate consideration.409

d. Relationship between risk and lead time410

A forecast is most useful if it comes sufficiently early (to leave some buffer time before impact)411

and is sufficiently precise to time your response. For example, in June we can say with certainty it412
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will snow next winter in Minnesota. To be useful, we want to know the date of the first snow as413

early as possible. By relating levels of risk (quantified by @+) and lead time (quantified by [+), we414

can now assess the limits of early prediction. Such a relationship would answer two questions: for415

an SSW transition, (1) how far in advance will we be aware of it with some prescribed confidence,416

say 80%? (2) given some prescribed lead time, say 42 days, how aware or ignorant could we be of417

it?418

The committor and lead time have an overall negative relationship, but they do not completely419

determine each other, as the contours in Figure 3(a,b) do not perfectly line up. We treat them as420

independent variables in Figure 4, which maps zonal wind and IHF as functions of the coordinates421

@+ and [+ in an inversion of Figure 3. The density c(x) projected on this space in 4(a) shows again422

a bimodal structure around a and b, which occupy opposite corners of this space by construction.423

Meanwhile, zonal wind and IHF are indicated by the shading in panels (b) and (c). The bridge424

between a and b is not a narrow band, but rather includes a curious high-committor, high-lead425

time branch which seems paradoxical: points at @+ = 0.9 have a greater spread in [+ than points426

at @+ = 0.5, contrary to the intuition that closeness to � in probability means closeness in time.427

The color shading shows that @+ is strongly associated with *(30 km), while [+ is more strongly428

associated IHF(30 km). In particular the horizontal contours in panel (c) show that the large spread429

in lead time near � is due almost completely to variation in IHF. In other words, the system can430

be highly committed to � with a low zonal wind, but if IHF is low, it may take a long time to get431

there. We can also see this from the lower-left region of Figure 3(a) and (b), where committor is432

high and lead time is high.433

There are two complementary explanations for this phenomenon. First, the low-*, low-IHF434

region of state space corresponds to a temporary restoration phase in a vacillation cycle, which435

delays the inevitable collapse of zonal wind below the threshold defining �. In fact, the ensemble436

21



of pathways starting from )0 in Figure 3(c) has one member whose zonal wind repeatedly dips437

low, but not quite to the level of b, and partially restores before finally plunging all the way down.438

These cycles are reminiscent of minor warmings preceding major ones.439

The second explanation is that many of these partial restoration events are not part of an �→ �440

transition, but rather a �→ � transition. In a highly irreversible system such as the Holton-Mass441

model, these two situations are quite dynamically distinct. To distinguish them using DGA, we442

would have to account for the past as well as the future, calculating backward-in-time forecasts443

such as the backward committor @−(x) = Px{X(g−) ∈ �}, where g− < 0 is the most-recent hitting444

time. Backward forecasts will be analyzed thoroughly in a forthcoming paper, but they are beyond445

the scope of the present one.446

In summary, @+ and [+ are principled metrics to inform preparation for extreme weather. For447

example, a threatened community might decide in advance to start taking action when an event is448

very likely, @+ ≥ 0.8, and somewhat imminent, [+ ≤ 10 days, or rather, when an event is somewhat449

likely, @+ ≥ 0.5, and very imminent, [+ ≤ 3 days. Because of partial restoration events, the450

committor does not determine the lead time or vice versa, and so a good real-time disaster response451

strategy should take both of them into account, defining an “alarm threshold” that is not a single452

number, but some function of both the committor and lead time. This idea is similar in spirit to453

that of the Torino scale, which assigns a single risk metric to an asteroid or comet impacts based454

on both probability and severity (Binzel 2000). Of course, after many near-SSW events, a lot of455

material damage may have already occurred, which may be a reason to define a higher threshold456

for the definition of �, or even a continuum for different severity levels of SSW. We emphasize457

that the choice of �, � and alarm thresholds are more of a community and policy decision than a458

scientific one. The strength of our approach is that it provides a flexible numerical framework to459

quantify and optimize the consequences of those decisions.460
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4. Sparse representation of the committor461

The committor projections showed give only an impression of its high-dimensional structure.462

While Equation (15) says how to optimally represent the committor over a given CV subspace,463

optimizing ([ 5 ;)] over 5 , it does not say which subspace ) is optimal. If the committor does admit464

a sparse representation, we could specifically target observations on these high-impact signals. In465

this section we address this much harder problem of optimizing ([ 5 ;)] over subspaces ) .466

The set of CV spaces is infinite, as observables ) can be arbitrarily complex nonlinear functions467

of the basic state variables x. Machine learning algorithms such as artificial neural networks468

are designed exactly for that purpose: to represent functions nonparametrically from observed469

input-output pairs. However, to keep the representation interpretable, we will restrict ourselves470

to physics-informed input features based on the Eliassen-Palm (EP) relation, which relates wave471

activity, PV fluxes and gradients, and heating source terms in a conservation equation. FromYoden472

(1987b), the EP relation for the Holton-Mass model takes the form473

mC

(
@′2

2

)
+ (mH@)d−1

B ∇ ·L

= −
5 2
0
#2 d

−1
B @
′mI (UdBmIk′) (17)

where L = (−dBD′E′)j+ (dBE′mIk′)k

The EP flux divergence has two alternative expressions: d−1
B ∇ · L = E′@′ = d−1

B
'
� 50

mI
[
dBE
′) ′

]
. If474

there were no dissipation (U = 0) and the background zonal state were time-independent (mC@ = 0),475

dividing both sides by mH@ would express local conservation of wave activity A = dB@
′2/(2mH@).476

Neither of these is exact in the stochastic Holton-Mass model, so we use the quantities in Equation477

(17) as diagnostics: enstrophy @′2, PV gradient mH@, PV flux E′@′, and heat flux E′) ′. Each field is478

a function of (H, I) and takes on very different profiles for the states a and b, as found by Yoden479

(1987b). A transition from � to �, where the vortex weakens dramatically, must entail a reduction480

23



in mH@ and a burst in positive E′) ′ (negative E′@′) as a Rossby wave propagates from the tropopause481

vertically up through the stratosphere and breaks. This is the general physical narrative of a sudden482

warming event, and these same fields might be expected to be useful observables to track for483

qualitative understanding and prediction. For visualization, we have found * (30 :<) and IHF(30484

km) =
∫ 30km
0km 4−I/�E′) ′ 3I to be particularly helpful. However, this doesn’t necessarily imply they485

are optimal predictors of @+, and regression is a more principled way to find them.486

We start by projecting the committor onto each observable at each altitude separately, in hopes487

of finding particularly salient altitude levels that clarify the role of vertical interactions. The first488

five rows of Figure 5 display, for five fields (*, |Ψ|, @′2, mH@, and E′@′) and for a range of altitude489

levels, the mean and standard deviation of the committor projected onto that field at that altitude.490

Each altitude has a different range of the CV; for example, because * has a Dirichlet condition491

at the bottom and a Neumann condition at the top, the lower levels have a much smaller range of492

variability than the high levels. We also plot the integrated variance, or !2 projection error, at each493

level in the right-hand column. A low projected committor variance over * at altitude I0 means494

that the committor is mostly determined by the single observable * (I0), while a high projected495

variance indicates significant dependence of @+ on variables other than* (I0). In order to compare496

different altitudes and fields as directly as possible, the !2 projection error at each altitude is an497

average over discrete bins of the observable.498

In selecting good CV’s, we generally look for a simple, hopefully monotonic, and sensitive499

relationship with the committor. Of all the candidate fields, * and mH@ stand out the most in500

this respect, being clearly negatively correlated with the forward committor at all altitudes. The501

associated projection error tends to be greatest in the region @+ ≈ 0.5, as observed before, but502

interestingly there is a small altitude band around 15−25 km where its magnitude is minimized.503

This suggests an optimal altitude for monitoring the committor through zonal wind, giving the504

24



most reliable estimate possible for a single state variable. In contrast, the projection of @+ onto505

|Ψ|, displays a large variance across all altitudes. The eddy enstrophy and potential vorticity506

flux are also rather unhelpful as early warning signs, despite their central role in SSW evolution.507

For example, the large, positive spikes in heat flux across all altitudes generally occur after the508

committor ≈ 0.5 threshold has already been crossed. Furthermore, the relationship of E′@′ with the509

committor is not smooth. The @+ < 0.5 region at each altitude is a thin band near zero.510

The exhaustive CV search in Figure 5 is visually compelling in favor of some fields and some511

altitudes over others, but it is not satisfactory as a rigorous comparison. Differences between units512

and ranges make it difficult to objectively compare the !2 projection error. Furthermore, restricting513

to one variable at a time is limiting. Accordingly, we also perform a more automated approach514

to identify salient variables in the form of a generalized linear model for the forward committor,515

using sparsity-promoting LASSO regression (“Least Absolute Shrinkage and Selection Operator”)516

due to Tibshirani (1996), as implemented in the scikit-learn Python package (Pedregosa et al.517

2011). As input features, we use all state variables Re{Ψ}, Im{Ψ},*, the integrated heat flux518 ∫ I

0 4
−I/�E′) ′ 3I, the eddy PV flux E′@′, and the background PV gradient mH@, at all altitudes I519

simultaneously. The advantage of a sparsity-promoting regression is that it isolates a small number520

of observables that can accurately approximate the committor in linear combination. Considering521

that regions close to � and � have low committor uncertainty, we regress only on data points with522

@+ ∈ (0.2,0.8), and of those only a subset weighted by c(x)@+(x) (1−@+(x)) to further emphasize523

the transition region @+ ≈ 0.5. To constrain committor predictions to the range (0,1), we regress524

on the committor after an inverse-sigmoid transformation, ln(@+/(1−@+)). First we do this at each525

altitude separately, and in Figure 6 (a) we plot the coefficients of each component as a function of526

altitude. The bottom row of Figure 5 also displays the committor projected on the height-dependent527

LASSO predictor.528
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The height-dependent regression in 6(a) shows each component is salient for some altitude range.529

In general, * and Im{Ψ} dominate as causal variables at low altitudes, while Re{Ψ} dominates530

at high altitudes. The overall prediction quality, as measured by '2 and plotted in Figure 6 (b), is531

greatest around 21.5 km, consistent with our qualitative observations of Figure 5. Note that not all532

single-altitude slices are sufficient for approximating the committor, even with LASSO regression;533

in the altitude band 50−60 km, the LASSO predictor is not monotonic and has a large projected534

variance, as seen in the bottom row of Figure 5. The specific altitude can matter a great deal. But535

by using all altitudes at once, the committor approximation may be improved further. We thus536

repeat the LASSO with all altitudes simultaneously and find the sparse coefficient structure shown537

in 6 (c), with a few variables contributing the most, namely the state variables Ψ and * in the538

altitude range 15-22 km. The nonlinear CVs failed to make any nonzero contribution to LASSO,539

and this remained stubbornly true for other nonlinear combinations not shown, such as E′) ′. With540

multiple lines of evidence indicating 21.5 km as an altitude with high predictive value for the541

forward committor, we can make a strong recommendation for targeting observations here. This542

conclusion applies only to the Holton-Mass model under these parameters, but the methodology543

explained above can be applied similarly to models of arbitrary complexity.544

We have presented the committor and lead time as “ideal” forecasts, especially the committor,545

which we have devoted considerable effort to approximating in this section. We want to emphasize546

that @+ and [+ are not competitors to ensemble forecasting; rather, they are two of its most important547

end results. So far, we have simply advocated including @+ and [+ as quantities of interest. Going548

forward, however, we do propose an alternative to ensemble forecasting aimed specifically at the549

committor, lead time, and a wider class of forecasting functions, as they are important enough550

in their own right to warrant dedicated computation methods. Our approach uses only short551

simulations, making it highly parallelizable, and shifts the numerical burden from online to offline.552
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Figures 2-6 were all generated using the short-simulation algorithm. While the method is not553

yet optimized and in some cases not competitive with ensemble forecasting, we anticipate such554

methods will be increasingly favorable with modern trends in computing.555

5. The computational method556

In this sectionwe describe themethodology, which involves some technical results from stochastic557

processes and measure theory. After describing the theoretical motivation and the numerical558

pipeline in turn, we demonstrate the method’s accuracy and discuss its efficiency compared to559

straightforward ensemble forecasting.560

a. Feynman-Kac formulae561

The forecast functions described above—committors and passage times—can all be derived from562

general conditional expectations of the form563

� (x;_) = Ex

[
� (X(g)) exp

(
_

∫ g

0
Γ(X(B)) 3B

)]
(18)

where again the subscript x denotes conditioning on X(0) = x; �,Γ are arbitrary known functions564

over R3; and g is a stopping time, specifically a first-exit time like Equation (10) but possibly565

with � replaced by another set. _ is a variable parameter that turns � into a moment-generating566

function. To see that the forward committor takes on this form, set � (x) = 1� (x), _ = 0 (Γ can be567

anything), and g = g�∪�. Then � (x) = Ex
[
1� (X(g))

]
= Px{X(g�2 ) ∈ �} = @+(x). For the [+, set568

g = g�, � = 1�, and Γ = 1. Then569

� (x;_) = Ex
[
1� (X(g)) exp(_g)

]
(19)

1
@+(x)

m

m_
� (x;0) = Ex [g1� (X(g))]

Ex [1� (X(g))]
(20)

= [+(x). (21)
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So we must also be able to differentiate � with respect to _.570

More generally, the function � is chosen by the user to quantify risk at the terminal time g; in571

the case of the forward committor, that risk is binary, with an SSW representing a positive risk572

and a radiative vortex no risk at all. The function Γ is chosen to quantify the risk accumulated up573

until time g, which might be simply an event’s duration, but other integrated risks may be of more574

interest for the application. For example, one could express the total poleward heat flux by setting575

Γ = E′) ′, or the momentum lost by the vortex by setting Γ(x) =* (a) −* (x). Extending the trick576

in (20), one can compute not only means but higher moments of such integrals by expressing the577

risk with Γ. Repeated differentiation � (x;_) gives578

m:_ � (x;0) = Ex

[
� (X(g))

(∫ g

0
Γ(X(B)) 3B

) : ]
(22)

We choose to focus on expectations of the form (18) in order to take advantage of the Feynman-579

Kac formula, which represents � (x;_) as the solution to a PDE boundary value problem over580

state space. As PDEs involve local operators, this form is more amenable to solution with short581

trajectories which don’t stray far from their source. The boundary value problem associated with582

(18) is583 
(L +_Γ)� (x;_) = 0 x ∈ �

� (x;_) = � (x) x ∈ �c

(23)

The domain � here is some combination of �c and �c. The operatorL is known as the infinitesimal584

generator of the stochastic process, which acts on functions by pushing expectations forward in585

time along trajectories:586

L 5 (x) := lim
ΔC→0

Ex [ 5 (X(ΔC))] − 5 (x)
ΔC

(24)

In a diffusion process like the stochastic Holton-Mass model, L is an advection-diffusion partial587

differential operator which is analogous to a material derivative in fluid mechanics. The generator588
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encapsulates the properties of the stochastic process. In addition to solving boundary value589

problems (18), its adjoint L∗ provides the Fokker-Planck equation for the stationary density c(x):590

L∗c(x) = 0 (25)

We can also write equations for moments of �, as in (22), by differentiating (23) repeatedly and591

setting _ = 0:592

L
[
m:_ �

]
(x;0) = −:Γm:−1

_ � (26)

This is an application of the Kac Moment Method (Fitzsimmons and Pitman 1999). Note that we593

never actually have to solve (23) with nonzero _. Instead we implement the recursion above. Note594

that the base case, : = 0, with � = 1� gives �+ = @+, no matter what the risk function Γ. In this595

paper we compute only up to the first moment, : = 1. Further background regarding stochastic596

processes and Feynman-Kac formulae can be found in Karatzas and Shreve (1998); Oksendal597

(2003); E et al. (2019).598

b. Dynamical Galerkin Approximation599

To solve the boundary value problem (23) with _ = 0, we start by following the standard finite600

element recipe, converting to a variational form and projecting onto a finite basis. First, we601

homogenize boundary conditions by writing � (x) = �̂ (x) + 5 (x), where �̂ is a guess function that602

obeys the boundary condition �̂ |�c = �, and 5 |�c = 0. Next, we integrate the equation against any603

test function q, weighting the integrand by a density ` (which is arbitrary for now, but will be604

specified later):605 ∫
R3
q(x)L 5 (x)`(x) 3x =

∫
q(x) (� −L�̂) (x)`(x)3x

〈q,L 5 〉` = 〈q,� −L�̂〉` (27)
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The test function q should live in the same space as 5 , i.e., with homogeneous boundary conditions606

q(x) = 0 for x ∈ �∪ �. We refer to the inner products in (27) as being “with respect to” the607

measure (with density) `. We approximate 5 by expanding in a finite basis 5 (x) =∑"
9=1 b 9q 9 (x)608

with unknown coefficients b 9 , and enforce that (27) hold for each q8. This reduces the problem to609

a system of linear equations,610

"∑
9=1
〈q8,Lq 9 〉`b 9 = 〈q8,� −L�̂〉` 8 = 1, . . . , " (28)

which can be solved with standard numerical linear algebra packages.611

This procedure consists of three crucial subroutines. First, we must construct a set of basis612

functions q 9 . Second, we have to evaluate the generator’s action on them, Lq 9 . Third, we have613

to compute inner products. With standard PDE methods, the basis size would grow exponentially614

with dimension, quickly rendering the first and third steps intractable. Successful approaches615

will involve a representation of the solution, �, suitable for the high dimensional setting, i.e.616

representations of the type commonly employed for machine learning tasks. DGA is one such617

method, whose special twist is to construct a “data-informed” basis of reasonable size, evaluate618

the generator by implementing Equation (24) with the same data set, and finally evaluate the inner619

products (27) with a Monte Carlo integral. The data consist of short trajectories launched from620

all over state space, which the system of linear equations stitches together into a global function621

estimate. We sketch the procedure here, but for the implementation details we refer to the appendix622

and to Thiede et al. (2019) and Strahan et al. (2021), where DGA has already been developed for623

molecular dynamics.624

Step 1: Generate the data, in the format of # initial conditions {X= : 1 ≤ = ≤ #}. Evolve each625

initial condition forward for a “lag time” ΔC to obtain a set of short trajectories {X= (C) : 0 ≤ C ≤626

ΔC, = = 1, . . . , #} ⊂ R3 . Here and going forward, X= will mean X= (0). The choice of starting627
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points is flexible, but crucial for the efficiency and accuracy of DGA. Because our goal here is to628

demonstrate interpretable results, we prioritize simplicity and accuracy over efficiency, and defer629

optimization to later work. We simply draw initial conditions at random from the long control630

simulation of 5×105 days, and then generate new short trajectories from those points. We do not631

sample the points with equal probability, but instead re-weight to get a uniform distribution over632

the space (* (30km), |Ψ| (30km)), within the bounds realized by the control simulation, which633

are approximately −30m/s ≤ * (30km) ≤ 70 m/s and 0m2/s ≤ |Ψ| (30km) ≤ 2× 107m2/s. This634

sampling procedure, and any other version, implicitly defines a sampling measure ` on state635

space, where `(x) 3x is the expected fraction of starting points in the neighborhood 3x about x.636

Sampling points with equal weight from the control run would induce ` = c, a very inefficient637

choice because probability concentrates around the metastable states a and b. The re-weighting638

procedure ensures data coverage of intermediate-wind regions between � and �, as well as the639

large bursts of wave amplitude that characterize the transition pathways. Our main results use640

# = 5×105 short trajectories with a lag time of ΔC = 20 days, sampled at a frequency of twice per641

day. This data set is more than needed to get a reasonable committor estimate, but we have sampled642

generously in order to visualize the functions in high detail. The final section will show the method643

is robust, capable of reasonably approximating the committor even with an order-of-magnitude644

reduction in data.645

Step 2: Define the basis. The Galerkin method works for any class of basis functions that becomes646

increasingly expressive as the library grows and becomes capable of estimating any function of647

interest. However, with a finite truncation, choosing basis functions is a crucial ingredient of DGA,648

greatly impacting the efficiency and accuracy of the results. In our current study, we restrict to the649

simplest kind of basis, which consists of indicator functions q8 (G) = 1(8 (G), where {(1, . . . , ("} is a650
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disjoint partition of state space. In practice we will construct these sets by clustering the initial data651

points as described in more detail in Appendix A. This is a common practice in the computational652

statistical mechanics community for building a Markov State Model (MSM) (Chodera et al. 2006;653

Frank and Fischer 2008; Pande et al. 2010; Bowman et al. 2013; Chodera and Noé 2014). MSMs654

are a dimensionality reduction technique that has also been used in conjuction with analysis of655

metastable transitions, primarily in protein folding dynamics (Noé et al. 2009). MSMs have also656

been used recently to study garbage patch dynamics in the ocean (Miron et al. 2021) as well as657

complex social dynamics (Helfmann et al. 2021). In Maiocchi et al. (2020), the authors take658

an interesting approach to MSMs by clustering points based on proximity to unstable periodic659

orbits, a potentially useful paradigm for general chaotic weather phenomena (Lucarini and Gritsun660

2020). DGA can be viewed as an extension of MSMs, though, rather than producing any reduced661

complexity model, the explicit goal in DGA is estimating specific functions as in Equation (18).662

Step 3: Apply the generator. The forward difference formula663

L̂q(X=) =
q(X= (ΔC)) −q(X=)

ΔC
(29)

suggested by the definition of the generator (24), results in a systematic bias when ΔC is finite. On664

the other hand, small values of ΔC lead to large variances in our Monte Carlo estimates of the inner665

products in (28). To resolve these issues we use an integrated form of the Feynman–Kac equations666

that involves stopping trajectories when they enter � or �. Details are provided in Appendix A.667

Step 4: Compute the inner products. The inner products in Equation (28) are integrals over high-668

dimensional state space that are intractable with standard quadrature, but can be approximated669

using Monte Carlo integration. If X is an R3-valued random variable distributed according to `,670

and we have access to random samples {X1, . . . ,X# } (which we do), the law of large numbers671
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gives, for any function 6 with finite expectation,672

lim
#→∞

1
#

#∑
==1

6(X=) =
∫
R3
6(x)`(x)3x (30)

Setting 6(x) = q8 (x)Lq 9 (x), the sample average on the left-hand side of (30) therefore provides673

an estimator of 〈q8,Lq 9 〉. Of course, our approximation uses finite # and nonzero ΔC. A similar674

sample average approximation can be used to estimate the inner product on the right-hand side of675

(28).676

These same steps apply to both @+ and E[g�], as well as the recursion in (26) for [+. For the677

Fokker-Planck equation (25), one extra step is needed to convert an equation with L∗ into an678

equation with L. Our procedure for estimating c is described in Appendix A.679

Step 5: Solve the equation (28). With a reasonable basis size " . 1000, an !* solver such as in680

LAPACK via Numpy can handle Equation (28). In the case of the homogeneous system for F(x),681

a &' decomposition can identify the null vector.682

c. DGA fidelity and sensitivity analysis683

To illustrate the effect of parameter choices on performance, we present here a simple sensitivity684

analysis. Figure 7 verifies the numerical accuracy and convergence of DGA by plotting the685

committor as a function of *(30 km), estimated both from the control simulation and with DGA,686

for various DGA parameters. The red curves @+DGA(* (30km)) are calculated by projecting the687

committor as in Figure 2(a), while the black curve @+EMP(* (30km)) is an empirical committor688

estimate equal to the fraction of control simulation points seen at a particular value of * (30km)689

that next hit �.690

In panels (a), (b), and (d), the lag time ΔC increases from 5 to 10 to 20 days while the number691

of short trajectories stays fixed at # = 5× 105. Panel (c) has a long lag of 20 days, but a small692
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data set of # = 5× 104, allowing us to see the tradeoff between # and ΔC. The basis size " is693

chosen heuristically as large as possible within reason for the clustering algorithm (see Appendix694

A). While DGA tends to systematically overestimate @+ relative to @+EMP in the mid-range of695

*, it seems to approach the empirical estimate as the data size and lag time increase. Each696

plot also displays the root-mean-square deviation between the two estimators over this subspace,697

Y =

√〈
(@+DGA− @

+
EMP)2

〉
c
. Within this regime, it seems that increasing the lag time has a greater698

impact on the deviation than increasing the number of data points. Panels (b) and (c) have699

approximately the same deviation Y, but (c) uses only one fifth the data, measured by total700

simulation time. On the other hand, more short trajectories can be parallelized more readily than701

fewer long trajectories, and the optimal choice will depend on computing resources.702

It is natural to ask whether our short trajectory based approach is more efficient than a direct703

shooting approach in which many independent “long” trajectories are launched from a single initial704

condition x and the committor probability @+(x) (or another forecast) is estimated directly. For a705

single value of x for which @+(x) is not very small (so that a non-negligible fraction of trajectories706

reach � before �) and for which the lead time [+(x) is not too large (so that trajectories reaching �707

do so without requiring long integration times), direct shooting will undoubtedly be more efficient.708

However, a key feature of our approach is that it simultaneously estimates forecasts at all values709

of x, allowing the subsequent analysis of those functions that has been the focus of much of this710

article. Building accurate estimators in all of state space by direct shooting would be extremely711

costly even for the reduced complexity model studied here.712

6. Conclusion713

Forecasting rare events is, by the very nature of rare events, an extremely difficult computational714

task, and one of science’smost pressing challenges. We have described a computational framework,715
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a dynamical Galerkin approximation to the Feynman-Kac equations, that combines theminimalistic716

philosophy of dimensionality reduction with the fidelity of high-resolution models. We identify717

a set of reduced coordinates, the committor probability and expected lead time, that provide the718

essential information that large ensemble forecasts hope to compute. DGA uses relatively short719

simulations of the full model to estimate these quantities of interest, allowing for prediction on720

much longer timescales than that of the simulation. In its focus on directly estimating statistics721

of interest, DGA differs from previous reduced-order modeling methods that attempt to capture722

general qualities of the system, including both physics-based models (Lorenz 1963; Charney and723

DeVore 1979; Legras and Ghil 1985; Crommelin 2003; Timmermann et al. 2003; Ruzmaikin et al.724

2003) and more recent data-driven models making use of machine learning (Giannakis and Majda725

2012; Giannakis et al. 2018; Berry et al. 2015; Sabeerali et al. 2017; Majda and Qi 2018; Wan et al.726

2018; Bolton and Zanna 2019; Chattopadhyay et al. 2020; Chen and Majda 2020; Kashinath et al.727

2021; Chattopadhyay et al. 2021).728

Wehave shown numerical results in the context of a stochastically forcedHolton-Massmodelwith729

75 degrees of freedom, which points to the method’s promise for forecasting. By systematically730

evaluating many model variables for their utility in predicting the fate of the vortex, we have731

identified some salient physical descriptions of earlywarning signs. We have furthermore examined732

the relationship between probability and lead time for a given rare event, a powerful pairing for733

assessing predictability and preparing for extreme weather. Our results suggest that the slow734

evolution of vortex preconditioning is an important source of predictability. In particular, the zonal735

wind and streamfunction in the range of 10-20 km above the tropopause seems to be optimal among736

a large class of dynamically motivated observables.737

Beyond the problemof real-timeweather forecasting, it is also important to assess the climatology,738

i.e., long-term frequency, intensity, and other characteristics of rare events. For this goal as well,739
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our methodology offers advantages over large ensemble simulations, which are currently the most740

detailed source of data (e.g., Schaller et al. 2018). The committor and lead time are ingredients741

in a larger framework called Transition Path Theory (TPT) for describing rare transition events at742

steady state, meaning average properties over long timescales. TPT describes not only the future743

evolution from an initial condition (x→ �), but the ensemble of full vortex breakdown events744

(�→ �), and how they differ from restoration events (�→ �). In principle, interrogating the745

ensemble of transition paths requires direct simulation of the system long enough to observe many746

transition events. However, using TPT, quantities computable by our framework can be combined747

to yield key statistics describing the ensemble of transition paths (Metzner et al. 2006, 2009;748

Vanden-Eijnden and E 2010; E. and Vanden-Eijnden 2006; Finkel et al. 2020). In a following749

paper we will apply the same short-trajectory forecasting approach together with TPT to compute750

transition path statistics such as return times and extract insight about physical mechanisms of the751

transition process.752

Scaling our approach up to state-of-the-art weather and climate models will require significant753

further development. In particular, a completely new procedure for generating trajectory initial754

conditions will need to be introduced. Generation of a trajectory long enough to thoroughly755

sample transitions will not be practical for more complicated models. One promising alternative756

is launching many trajectories in parallel and selectively replicating those that explore new regions757

of state space, especially transition regions. Such an approach could build on exciting progress758

over the last decade in targeted rare event simulation schemes (Hoffman et al. 2006; Weare 2009;759

Bouchet et al. 2011, 2014; Vanden-Eijnden and Weare 2013; Chen et al. 2014; Yasuda et al. 2017;760

Farazmand and Sapsis 2017; Dematteis et al. 2018; Mohamad and Sapsis 2018; Dematteis et al.761

2019; Webber et al. 2019; Bouchet et al. 2019a,b; Plotkin et al. 2019; Simonnet et al. 2020; Ragone762

and Bouchet 2020; Sapsis 2021). A potential challenge here is that GCMs may not be set up for763
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short simulations that start and stop frequently. For this reason, it may be sensible to use longer lag764

times and a sliding window to define short trajectories. Defining the source of stochasticity is also765

an important step that varies between models. Explicitly stochastic parameterization (e.g., Berner766

et al. 2009; Porta Mana and Zanna 2014) will automatically lead to a spread in the short-trajectory767

ensemble, but in deterministic models, uncertainty will arise from perturbing the initial conditions.768

This may require special care depending on the model.769

Another area of algorithmic improvement is selecting a basis expansion of the forecast functions.770

In upcoming work we will explore more flexible representations using kernel methods and neural771

networks. The solution of high-dimensional PDEs is an active research area that is making772

innovative use of machine learning, particularly in the fields of computational chemistry, quantum773

mechanics, and fluid dynamics (e.g., Carleo and Troyer 2017; Han et al. 2018; Khoo et al. 2018; Li774

et al. 2020; Mardt et al. 2018; Li et al. 2019; Raissi et al. 2019; Lorpaiboon et al. 2020). Similar775

approaches may hold great potential for understanding predictability in atmospheric science.776
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APPENDIX A799

Feynman-Kac formula and DGA800

In this section we spell out the DGA procedure in more detail than the main text, explaining the801

variants that get us to the more intricate conditional expectations. The theoretical background802

can be found in, e.g., Karatzas and Shreve (1998); Oksendal (2003); E et al. (2019). Let X(C)803

be a time-homogeneous stochastic process with continuous sample paths in R3 . Associated to804

this process is the infinitesimal generator, L, which acts on observable functions by evolving their805

expectation forward in time:806

L 5 (x) = lim
ΔC→0

Ex [ 5 (X(ΔC))] − 5 (x)
ΔC

(A1)
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where Ex [·] := E[·|X(0) = x]. It can be shown that under the above assumptions on X, the Itô chain807

rule gives808

35 (X(C)) = L 5 (X(C)) 3C + 3M(C) (A2)

where M(C) is a martingale. More concretely, in this paper, X(C) is an Itô diffusion obeying the809

stochastic differential equation810

X(C) = X(0) +
∫ C

0
1(X(B)) 3B (A3)

+
∫ C

0
2(X(B)) 3W(B)

with infinitesimal generator and martingale terms811

L 5 (x) =
3∑
8=1
18 (x)

m 5 (x)
mx8

(A4)

+
3∑
8=1

3∑
9=1

1
2
[
f(x)f(x)>

]
8 9

m2 5 (x)
mx8mx 9

3M(C) =
3∑
8=1

m 5 (x)
mx8

f8 9 (x)3W 9 (C) (A5)

The key forecasting quantities in this paper are of the form (18) and can be solved with (23), a812

linear equation involving the generator. We now lay out a brief derivation of the Feynman-Kac813

formula and our numerical discretization, roughly following E et al. (2019).814

a. Feynman-Kac formula815

Let � be a domain in R3 (for example, (�∪ �)2) and g�c = min{C ≥ 0 : X(C) ∉ �} be the first816

exit time from this domain starting at time zero. This is a random variable which depends on the817

starting condition x ∈ �. Let � : m�→ R be a boundary condition, Γ : �→ R a source term, and818

Γ : �→ R a term to represent accumulated risk. We seek a PDE for the conditional expectation819
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from (18):820

� (x) = Ex

[
� (X(g)) exp

(
_

∫ g

0
Γ(X(B)) 3B

)]
(A6)

where Ex [·] = E[·|X(0) = x]. To derive the PDE (23), consider the following stochastic process:821

/ (C) = � (X(C)). (C) (A7)

where . (C) := exp
(
_
∫ C

0 Γ(X(B)) 3B
)
. Itô’s lemma gives us that 3. (C) = _Γ(X(C)). (C) 3C. Hence,822

applying the product rule to / (C),823

3/ (C) = 3� (X(C)). (C) +� (X(C)) 3. (C) (A8)

= L� (X(C)). (C) 3C + 3M(C). (C) (A9)

+_� (X(C))Γ(X(C)). (C) 3C

=
[
L� +_Γ�

]
(X(C)). (C) 3C +. (C)3M(C) (A10)

where in (A8) we have left out the quadratic cross-variation of � (X(C)) and . (C) because . has824

finite variation. If the bracketed term (L +_Γ(x))� (x) = 0 for all x, then / (C) is a martingale and825

it follows that826

/ (0) = Ex [/ (C)] (A11)

� (x) = Ex

[
� (X(C)) exp

(
_

∫ C

0
Γ(X(B)) 3B

)]
(A12)

Finally, the formula still holds if we substitute a stopping time for C. By choosing g, the first exit827

time from �, the � (X(C)) inside the brackets becomes its boundary value � (X(g)). Thus � (x) as828

defined in (A6) also solves the PDE boundary value problem (23):829 
(L +_Γ(x))� (x;_) = 0 x ∈ �

� (x;_) = � (x) x ∈ �c

(A13)
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where we have inserted the additional dependence of � on _ in order to lead directly to the recursive830

formulas (20) and (26).831

b. Dynkin’s formula and finite lag time832

Wehave presented (29) as amathematically conccise approximation to the generator. In practice,833

we achieve better numerical stability integrating the generator (A1) to a finite lag timeΔC, following834

Strahan et al. (2021). The theorem that allows this is called Dynkin’s formula (e.g., Oksendal 2003),835

which states that for any suitable function 5 : R3 → R and a stopping time \ (not to be confused836

with CV coordinates),837

Ex [ 5 (X(\))] = 5 (x) +Ex

[∫ \

0
L 5 (X(C)) 3C

]
. (A14)

The left-hand side, Ex [ 5 (X(\))], is known as the transition operator T \ 5 (x), a finite-time version838

of the generator. Note that this is a deterministic operator despite \ being a random variable,839

because by definition T \ only has \ inside of expectations. We can apply Dynkin’s formula840

to (A13) before numerical approximation, setting \ = min(ΔC, g). That is, the short trajectory841

{X(C) : 0 ≤ C ≤ ΔC = 20 days} is stopped early if it exits the domain � before ΔC. Applying842

Dynkin’s formula to � (x;_), we find843

Ex [� (X(\))] = � (x) +Ex

[∫ \

0
L� (X(C)) 3C

]
= � (x) −_Ex

[∫ \

0
Γ(X(C))� (X(C)) 3C

]
T \� (x) = � (x) −_I\ [Γ�] (x) (A15)

where I\ is shorthand notation for the integral operator on the right. Equation (A15), along with844

the boundary conditions � |�c = � |�c , gives us a linear equation for � (x) that can be solved by845

DGA. As outlined in Section 5, we write � = �̂ + 5 , where �̂ obeys the boundary conditions and846
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5 obeys847

(T \ −1) 5 (x) +_I\ [Γ 5 ] (x) = (A16)

− (T \ −1)�̂ (x) −_I\ [Γ�̂] (x)

We then expand 5 =
∑"
9=1 b 9q 9 (x) with basis functions {q 9 } that are zero on �c, and take `-848

weighted inner products with q8 on both sides to obtain849

"∑
9=1
b 9

(〈
q8, (T \ −1)q 9

〉
`
+_

〈
q8,I\ [Γq 9 ]

〉
`

)
=

−
〈
q8, (T \ −1)�̂

〉
`
−_

〈
q8,I\ [Γ�̂]

〉
`

(A17)

Finally, the inner products can be estimated with short trajectories using (30). For two functions850

q and k, the first left-hand side inner product is approximately851

〈
q, (T \ −1)k

〉
`
≈ 1
#

#∑
==1

q(X=)
[
k(X= (\=)) −k(X=)

]
(A18)

where \= is the sampled first-exit time of the =th trajectory, or ΔC if it never exits. The second852

left-hand side inner product is approximately853

〈
q,I\ [Γk]

〉
`
≈

1
#

#∑
==1

q(X=)
∫ \=

0
Γ(X= (C))k(X= (C)) 3C (A19)

where the time integral on the right is computed with the trapezoid rule on trajectory, which is854

sampled every 0.5 days.855

Given a fixed Γ and �, and with the inner products in hand, we now have (A17) as a family of856

matrix equations with _ a continuous parameter:857

(%+_&)/ (_) = v+_r. (A20)
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We can then differentiate in _ and evaluate at _ = 0 to obtain a ready-to-solve discretization of the858

recursion (26):859

%/ (0) = v (A21)

%/′(0) = r−&b (0) (A22)

%/ (:) (0) = −:&/ (:−1) (0) for : ≥ 2 (A23)

where the :’th derivative / (:) (0) is the coefficient expansion in the basis {q 9 } of the :’th moment860

from (22):861

m:_ � (x;0) = Ex

[
� (X(g))

(
_

∫ g

0
Γ(X(B)) 3B

) : ]
(A24)

c. Change of measure862

We now specify how to compute the change of measure from ` (the sampling distribution) to863

c (the steady-state distribution), using an adjoint version of the Feynman-Kac formula. Each of864

the basis functions q8 has an expectation at time zero with respect to the steady state distribution:865

EX(0)∼c [q8 (X(0))] =
∫
q8 (x)c(x) 3x. Evolving the dynamics from 0 to ΔC induces another expec-866

tation: EX(0)∼c [q8 (X(ΔC))] =
∫
T ΔCq8 (x)c(3x). c is the invariant distribution, which means that867

these two integrals are equal:868 ∫
(T ΔC −1)q8 (x)c(x)3x = 0. (A25)

Furthermore, with a change of measure they can be rewritten with respect to the sampling measure869

` instead of c, so870 ∫
(T ΔC −1)q8 (x)

3c

3`
(x)`(x) 3x = 0 (A26)

The change of measure 3c
3`
(x), which we abbreviate F(x), is yet another unknown function which871

we expand in the basis as F(x) =∑
9 b 9q 9 (x). Putting this into the integral and using Monte Carlo,872
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we cast the coefficients b 9 as the solution to a null eigenvector problem:873

0 =
∫
(T ΔC −1)q8 (x)

"∑
9=1
2 9 (F)q 9 (x)`(3x) (A27)

≈
"∑
9=1
2 9 (F)

#∑
==1

[
q8 (X= (ΔC)) −q8 (X=)

]
q 9 (X=) (A28)

This last equation is simply the Fokker-Planck equation, L∗c = 0, in weak form and integrated in874

time using Dynkin’s formula. Note that the matrix elements in (A28) are the transpose of those875

in (A18).876

d. DGA details877

Wewill provide more details here on our particular construction of basis functions. The partition878

{(1, . . . , ("} to build the basis function library q 9 (x) = 1( 9
(x), = = 1, . . . , # should be chosen with879

a number of considerations in mind. The partition elements should be small enough to accurately880

represent the functions they are used to approximate, but large enough to contain sufficient data881

to robustly estimate transition probabilities. We form these sets by a hierarchical modification of882

 -means clustering on the initial points {X=}#==1.  -means is a robust method that can incorporate883

new samples by simply identifying the closest centroid, and is commonly used in molecular884

dynamics (Pande et al. 2010). However, straightforward application of  -means, as implemented885

in the scikit-learn software (Pedregosa et al. 2011), can produce a very imbalanced cluster886

size distribution, even with empty clusters. This leads to unwanted singularities in the constructed887

Markov matrix. To avoid this problem we cluster hierarchically, starting with a coarse clustering888

of all points and iteratively refining the larger clusters, at every stage enforcing a minimum cluster889

size of five points, until we have the desired number of clusters ("). After clustering on the initial890

points {X=}, the other points {X= (C),0 < C ≤ ΔC} are placed into clusters using an address tree891

produced by the  -means cluster hierarchy. For boundary value problems with a domain � and892
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boundary �c, we need only cluster points in �, since the basis should be homogeneous. The total893

number of clusters should scale with data set. In our main results with # = 5× 105, we found894

" = 1500 to be enough basis functions to resolve some of the finer details in the structure of895

the forecast functions, but not so many as to require an unmanageably deep address tree, which896

manifests in dramatic slowdown past a certain threshold. At this point, the cluster number is still a897

manually tuned hyperparameter.898

Because the committor and lead time obey Dirichlet boundary conditions on �∪ �, the basis899

funtions used to construct them should be zero on �∪ �, meaning only data points X= ∉ �∪ �900

should be used to produce the clusters. On the other hand, the steady state distribution has no901

boundary condition to satisfy, only a global normalization condition. Hence, the basis for the902

change of measure F must be different from the basis for @+ and [+, with its clusters including all903

data points in �∪ �. Furthermore, the basis must be chosen so that the matrix 〈(T ΔC −1)q8, q 9 〉904

has a nontrivial null space; this is guaranteed by the indicator basis set we use, but can otherwise905

be guaranteed by including a constant function in the basis.906

The use of an indicator basis follows the Markov State Modeling literature (Chodera et al. 2006;907

Pande et al. 2010, e.g.,), which has the advantage of simplicity and robustness. In particular, the908

discretization of T \ − 1 is a properly normalized stochastic matrix (with nonnegative entries and909

rows summing to 1), which guarantees the maximum principle 0 ≤ @+(x) ≤ 1 and 0 ≤ F(x) for all910

data points x. However, alternative basis sets have been shown to be promising, perhaps with much911

less data. Thiede et al. (2019) used diffusion maps, while Strahan et al. (2021) used a PCA-like912

procedure to construct the basis. More generally, there is no requirement to use a linear Galerkin913

method to solve the Feynman-Kac formulae. More flexible functional forms may have an important914

role to play as well. In the low-data regime, some preliminary experiments have suggested that915

Gaussian process regression (GPR) is a useful way to constrain the committor estimate with a prior,916
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following the framework in Bilionis (2016) to solve PDEs with Gaussian processes. As mentioned917

in the conclusion, there is rapidly growing interest in the use of artificial neural networks to solve918

PDEs. As with many novel methods, however, DGA is likely to work best on new applications919

when its simplest form is applied first. This will be our approach in coming experiments on more920

complex models.921
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with altitude, and the weak vortex (the fixed point b, red) which dips close to zero in the mid-stratosphere. (b)

Streamfunction contours are overlaid for the two equilibria a and b. (c) Parametric plot of a control simulation

in a 2-dimensional state space projection, including two transitions from � to � (orange) and � to � (green). (d)

Time series of* (30 km) from the same simulation. (e) The steady state density projected onto* (30km).
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Fig. 2. One-dimensional projections of the forward committor (first row) and lead time to � (second

row). These functions depend on all 3 = 75 degrees of freedom in the model, but we have averaged across

3 − 1 = 74 dimensions to visualize them as rough functions of two single degrees of freedom: * (30 km) (first

column) and integrated heat flux up to 30 km, IHF (second column). Panel (a) additionally marks the @+ = 1
2

threshold and the corresponding value of zonal wind.
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Fig. 3. The density, committor, and lead time as functions of zonal wind and integrated heat flux. Panel

(a) projects the steady state distribution c(x) onto the two-dimensional subspace (*,IHF) at 30 km. The white

regions surrounding the gray are unphysical states with negligible probability. Panels (b) and (c) display the

committor and lead time in the same space. A horizontal transect marks the level *(30 km) = 38.5 m/s, where

@+ according to * only is 0.5. Panels (d) and (e) show ensembles initialized from two points )0 and )1 along

the transect, verifying that their committor and lead time values differ from their values according to*, in a way

that is predictable due to considering IHF in addition to*.
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Fig. 4. Committor and lead time as independent coordinates. This figure inverts the functions in Figure 3,

considering the zonal wind and integrated heat flux as functions of committor and lead time. The two-dimensional

space they span is the essential goal of forecasting. Panel (a) shows the steady state distribution on this subspace,

which is peaked near a and b (darker shading), weaker in the "bridge" region between them, and completely

negligible the white regions unexplored by data. Panels (b) and (c) display zonal wind and heat flux in color as

functions of the committor and lead time.
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Fig. 5. Projection of the forward committor onto a large collection of altitude-dependent physical

variables. The top left panel shows heatmaps of @+ as a function of * and I; white regions denote where

* (I) is negligibly observed. The top middle panel shows the standard deviation in @+ as a function of * and

I; this uncertainty stems from the remaining 74 model dimensions. The right-hand panel displays the total

mean-squared error due to the projection for each altitude, i.e.,
√
([ 5 ;)] from Equation (14). A low value

indicates that this level is ideal for prediction. The following rows show the same quantities for other physical

variables: streamfunction magnitude, eddy enstrophy, background PV gradient, eddy PV flux, and LASSO.
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Fig. 6. Results of LASSO regression of the forward committor with linear and nonlinear input features.

Panel (a) shows the coefficients when @+ is regressed as a function of only the variables at a given altitude,

and panel (b) shows the corresponding correlation score. 21.5 km seems the most predictive (where I ≡ 0 at

the tropopause, not the surface). Panel (c) shows the coefficient structure when all altitudes are considered

simultaneously. Most of the nonzero coefficients appear between 15-22 km, distinguishing that range as highly

relevant for prediction.
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Fig. 7. Fidelity of DGA. For several DGA parameter values of # (the number of data points)," (the number of

basis functions) and lag time, we plot the committor calculated from DGA and from the long control simulation,

both as a function of*(30 km). The mean-square difference Y in the legend is used as a global error estimate for

DGA.
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