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ABSTRACT

Atmospheric regime transitions are highly impactful as drivers of extreme weather events, but

pose two formidable modeling challenges: predicting the next event (weather forecasting), and

characterizing the statistics of events of a given severity (the risk climatology). Each event has a

different duration and spatial structure, making it hard to define an objective “average event.” We

argue here that transition path theory (TPT), a stochastic process framework, is an appropriate tool

for the task. We demonstrate TPT’s capacities on a wave-mean flow model of sudden stratospheric

warmings (SSWs) developed by Holton andMass (1976), which is idealized enough for transparent

TPT analysis but complex enough to demonstrate computational scalability. Whereas a recent

article (Finkel et al. 2021) studied near-term SSW predictability, the present article uses TPT to

link predictability to long-term SSW frequency. This requires not only forecasting forward in time

from an initial condition, but also backward in time to assess the probability of the initial conditions

themselves. TPT enables one to condition the dynamics on the regime transition occurring, and

thus visualize its physical drivers with a vector field called the reactive current. The reactive current

shows that before an SSW, dissipation and stochastic forcing drive a slow decay of vortex strength

at lower altitudes. The response of upper-level winds is late and sudden, occurring only after the

transition is almost complete from a probabilistic point of view. This case study demonstrates that

TPT quantities, visualized in a space of physically meaningful variables, can help one understand

the dynamics of regime transitions.
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1. Introduction32

Many features of the atmosphere-ocean system’s large-scale variability can be viewed as transi-33

tions between qualitatively different regimes. Examples include blocking, monsoons, El Niño, and34

Sudden StratosphericWarming events (SSWs, the subject of this paper), all of which are associated35

with extreme weather. From a scientific perspective, regime transitions are handles by which to36

probe the climate’s nonlinear, non-equilibrium dynamics. They expose novel physics and push us37

to qualitatively expand our physical understanding. From a human perspective, these relatively rare38

anomalies pose major societal challenges (Lesk et al. 2016; Kron et al. 2019), especially with a39

changing climate and increasing reliance on weather-susceptible infrastructure (e.g., Mann et al.40

2017; Frame et al. 2020).41

Regime transitions are used as benchmarks for model development across a hierarchy, from state-42

of-the-art Earth system models with billions of variables (e.g., Stephenson et al. 2008; Lengaigne43

and Vecchi 2010; Vitart and Robertson 2018) to conceptual low-order models with fewer than44

ten variables (e.g., Charney and DeVore 1979; Timmermann et al. 2003; Ruzmaikin et al. 2003;45

Crommelin et al. 2004; Thual et al. 2016). In Finkel et al. (2021), we addressed near term forecasting46

of regime transitions in the context of an idealized sudden stratospheric warming (SSW) model47

constructed by Holton and Mass (1976), which possesses two metastable states: a strong-vortex48

regime and a weak-vortex regime. The present paper’s chief goal is to address questions about the49

long-term climate statistics of rare events by way of a case study on SSW-like regime transitions50

in the Holton-Mass model: how often do they occur, what are their typical development pathways,51

and how variable are those pathways between events?52

We will use the framework of transition path theory (TPT; E and Vanden-Eĳnden 2006), which53

offers a concise set of quantities to answer these questions. An SSW event is represented as a54
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transition path from the strong vortex regime, which we denote state �, to the weak vortex regime,55

state �. The main quantity of interest will be the reactive current J��, defined in section 3, which56

specifies the flow of probability density through state space conditioned on an �→ � transition57

event being underway. To properly implement that conditional statement, wewill need two auxiliary58

quantities. First, the forward committor @+
�
(x) gives the probability that the system, initialized in a59

state x, next reaches � before �. This is a measure of progress toward SSW: what is the probability60

of observing a SSW before returning to the strong vortex climatology? Second, the backward61

committor @−
�
(x) gives the probability, looking backward in time, that the system visited � more62

recently than �, i.e., the model was last in the meta-stable strong vortex climatology, as opposed63

to just recovering from a recent SSW.64

The forward committor itself was a primary focus of Finkel et al. (2021), where we pursued65

forecasting as the main objective. Committor probabilities are generally gaining traction as a66

metric for weather prediction; see Tantet et al. (2015) for an application to atmospheric blocking,67

Lee et al. (2018) for an application to tropical cyclone downscaling, Lucente et al. (2022) for an68

application to El Niño, and Miloshevich et al. (2022) for an application to heat waves. However,69

in the present paper we are pursuing climatological statistics rather than forecasting probabilities,70

using the committor only as an intermediate calculation for the reactive current, which characterizes71

the full transition process from � to � rather than its “forward half” from x to �.72

Some previous studies (Crommelin 2003; Tantet et al. 2015) have visualized what are essentially73

reactive currents for blocking events in an observable subspace of leading EOFs. However, these74

studies were not couched in the language of TPT, a formalism that brings more quantitative results.75

Namely, the reactive current J�� provides a direct estimate of the SSW rate, decomposing it over a76

continuous probability distribution of pathways. Formal TPT has not yet been widely taken up by77

the atmosphere-ocean science community, besides a few exceptions (Finkel et al. 2020; Miron et al.78
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2021, 2022). Part of our goal here is to encourage a common quantitative language for discussing79

regime transitions, which could help to organize several existing lines of research.80

J��, like @+�, can be expressed as a function of any observable subspace for visual exploration,with81

the complementary subspace treated as random variables. It is most enlightening to use observables82

with concrete physical meaning. A recent articleMiloshevich et al. (2022) exploited this property to83

interpret a neural-network-learned committor for heat waves in terms of geopotential height and soil84

moisture, thus quantifying their predictive power at various lead times. In Finkel et al. (2021), we85

visualized the committor and expected lead time in a two-dimensional subspace consisting of zonal86

wind*, an index for polar vortex strength, and vertically integrated heat flux (IHF), which roughly87

measures the amplitude and phase tilt of vortex-disrupting planetary waves. Here we continue to88

use those coordinates, but also introduce a new subspace based on the zonal-mean meridional89

potential vorticity (PV) gradient and eddy enstrophy. These two quantities obey a conservation law90

in the absence of dissipation and stochastic forcing, a slight variation of the Eliassen-Palm relation.91

This allows us to diagnose more precisely the crucial roles of dissipation and stochastic forcing92

in driving the transition process, an important step toward understanding their causal relationship.93

Other kinds of atmospheric regime transitions will have different relevant physical diagnostics, any94

of which can be seen as an independent variable for the committor function and reactive current.95

This paper is organized as follows. In section 2 we review the dynamical model. In section96

3 we visualize the evolution of SSW events using the probability current, and introduce the key97

quantities for TPT—committors, densities, and currents—alongwith a brief summary of themethod98

to compute them, which is more thoroughly explained in the supplementary document. In section99

4, we use reactive current to construct a composite SSW evolution, and compare this to the standard100

composite method. In section 5, we change coordinates to better examine the dynamics of SSW101

events. We assess future directions and conclude in section 6.102
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2. A stochastically forced Holton-Mass model of SSW dynamics103

Weuse exactly the samemodel as in Finkel et al. (2021), which is presented here for completeness.104

a. Model specification105

Holton andMass (1976) developed a minimal model for the variability of the winter stratospheric106

polar vortex, capturing the wave-mean flow interactions behind sudden stratospheric warming107

events. The model’s prognostic variables consist of a zonally averaged zonal wind D(H, I, C) and a108

perturbation geostrophic streamfunction k′(G, H, I, C) on a V-plane channel with a central latitude109

of \ = 60◦N, a meridional extent of 60◦, and a height of 70 km, with the coordinate I ranging from110

0 at the bottom of the domain (the tropopause) to 70 km at the top of the domain. D and k′ are111

projected onto a single zonal wavenumber : = 2/(0 cos\) and a meridional wavenumber ℓ = 3/0:112

D(H, I, C) =* (I, C) sin(ℓH) (1)

k′(G, H, I, C) = Re{Ψ(I, C)48:G}4I/2� sin(ℓH), (2)

where 0 = 6370 km is the radius of Earth, and � = 7 km is the scale height. * (the mean flow)113

and Ψ (a complex-valued wave amplitude) evolve according to the projected primitive equations114

and the linearized quasi-geostrophic potential vorticity (QGPV) equation. A non-dimensionalized115

version of the equations is as follows, rearranged slightly from Finkel et al. (2021). The mean flow116
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* (I, C) satisfies117

2
(Yℓ)2

mC

[
G2V+ Y

(
G2ℓ2* +*I −*II

) ]
(3a)

=
2
Yℓ2

4ImI
[
4−IUmI (* −*')

]
+ :4IIm{Ψ∗ΨII}

with boundary conditions

* (I = 0) =*' (I = 0) = 10m/s

*I (I = Itop) =*'
I (I = Itop) = W/1000

while the perturbation streamfunction amplitude Ψ(I, C) satisfies118

(mC + 8:Y*)
[
−G2(:2 + ℓ2) − 1

4
+ m2I

]
Ψ (3b)

+8:Ψ
[
G2V+ Y

(
G2ℓ2* +*I −*II

) ]
= −

(
mI −

1
2

) [
U

(
mI +
1
2

)
Ψ

]
with boundary conditions

Ψ(I = 0) = 6ℎ
50

Ψ(I = Itop) = 0.

We have defined the nondimensional parameter G2 := �2#2/( 5 20 !
2), where 50 is the coriolis119

parameter at 60◦N, #2 = 4× 10−4 is the the stratification, and ! = 2.5× 105 km is a horizontal120

length scale chosen to make non-dimensionalized * and Ψ variables have similar climatological121

variances. The linear relaxation towards *' (I) = 10m/s + (W/1000)I on the right-hand side of122

Eq. (3a) is the force that maintains the typically strong polar vortex. Here W = 1.5 m s−1 km−1.123

The relaxation is mediated by a Newtonian cooling profile U(I), which is plotted in Fig. 1a, in its124
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original dimensional units. Meanwhile, the lower boundary condition on Ψ comes from a bottom125

topography ℎcos(:G), where ℎ = 38.5 m. This serves as a source of planetary waves.126

There are two differences from Finkel et al. (2021), besides rearrangement. First, Finkel et al.127

(2021) had an erroneous but inconsequential negative sign in front of *'
II (their Eq. 3) which is128

corrected in Eq. (3a). Second, the left side of Eq. (3b) has two terms, ±8:YG2ℓ2*Ψ, which could129

be cancelled out; we have retained them both to maintain a term-by-term correspondence with the130

original QGPV equation,131

(mC +DmG)@′+ E′mH@ = sources − sinks, (4)

where @′ = ∇2k′+
5 20
#2
4I/�mI (4−I/�k′) (5)

and E′ = mGk′ (6)

which will be important when deriving the enstrophy budget in section 5.132

After discretizing to 27 vertical levels, we end upwith a state space of dimension 3 = 3×(27−2) =133

75, with a state vector134

X(C) =
[
Re{Ψ(C)}, Im{Ψ(C)},* (C)

]
∈ R75 (7)

each of the three entries representing a vector with 25 discrete altitudes. We thus obtain a system135

of 75 ODEs, ¤X(C) = v(X(C)). We furthermore perturb the system by stochastic forcing to represent136

unresolved processes such as smaller-scaleRossby and gravitywaves, initial condition uncertainties,137

and sources of model error, an approach originally put forward by Birner and Williams (2008) and138

used more recently by Esler and Mester (2019). The forcing is white in time, giving an Itô diffusion139

3X(C) = v(X(C)) 3C +2(X(C)) 3W(C) (8)

where v(x) (not to be confused with meridional wind velocity, E) is the drift function determined140

by Eqs. (3). W(C) is an (< + 1)-dimensional white-noise process, and 2 ∈ R3×(<+1) is a matrix141
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specifying the spatially smooth structure of the noise as Fourier modes in the vertical. 2 could142

depend on the state vector X, but for simplicity we fix it to a constant, defined as follows. At143

each timestep XC = 0.005 days, after incrementing the full system by XX = v(X)XC, we additionally144

increment the zonal wind profile by145

X* (I) = f*
<∑
:=0

[: sin
[(
: + 1
2

)
c
I

Itop

]√
XC (9)

where f* = 1 m s−1 day−1/2, whose units reflect the quadratic variation of Brownian motion. The146

numerical scheme is known as Euler-Maruyama (see, e.g., Pavliotis 2014, ch. 5). Equation 9 fully147

defines the matrix 2. For : = 0, . . . ,<, the :th column starts with 50 zeros, since there is no forcing148

on Re{Ψ} or Im{Ψ}. The last 25 entries are evenly spaced samples of the sinusoidal factor in149

Eq. (9), all times f* .150

The specific choice of stochastic forcing does affect the transition path statistics, but our method151

can be applied to any stochastic forcing. Because of the nonlinear coupling between* (I) andΨ(I)152

in Eqs. (3a) and (3b), the noise injected to* feeds to Ψ after a single timestep.153

b. Diagnostics154

Until section 5, we use two main diagnostics for visualization, the same as in Finkel et al. (2021).155

The first is zonal wind strength * (I), an index for vortex strength which is used to define regimes156

� and �. The second is the meridional eddy heat flux E′) ′(I), which quantifies the heat being157

advected into the polar region associated with the sudden warming, and in the quasi-geostrophic158

limit, the vertical propagation of Rossby waves. In the Holton-Mass model, this takes the form159

E′) ′(I) = � 50
'

mk′

mG

mk′

mI
∝ 4I/� |Ψ(I) |2 mi

mI
, (10)

where ' is the ideal gas constant for dry air and i is the phase of the complex-valued streamfunction160

Ψ. Hence the heat flux is related to the amplitude and phase tilt of the waves, both of which rise161
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significantly during a SSW event. We also use the density-weighted vertical integral of heat flux,162

IHF(I) :=
∫ I

0
4−I/�E′) ′(I′) 3I′ (11)

which varies more smoothly than E′) ′ at any single altitude.163

c. Bistability164

We use the same constant parameters and boundary conditions as Finkel et al. (2021), which165

give rise to two stable equilibria: a radiative equilibrium-like state, denoted a, and a disturbed state166

b, in which upward propagating stationary waves flux momentum down to the lower boundary,167

weakening zonal winds. Detailed bifurcation analysis by Yoden (1987a) and Christiansen (2000)168

found a range of values for bottom topography ℎ that create bistability. Figure 1(b,c) depicts169

the zonal wind and streamfunction of these two equilibria. SSW events in this model are abrupt170

transitions from the region near a to the region near b. If a strong wave from below happens171

to catch the stratospheric vortex in a vulnerable configuration, then a burst of wave activity can172

propagate upward, ripping apart the polar vortex and causing zonal wind to collapse (Charney173

and Drazin 1961; Yoden 1987b). With certain parameters, the vortex can get stuck in repeated174

“vacillation cycles”, in which the vortex begins to restore with the help of radiative forcing, only175

to be undermined quickly by the wave. The situation of two well-separated equilibria is highly176

idealized, and not a generic feature of climate phenomena; this system, with these parameters,177

serves to demonstrate qualitative features of SSW, not represent the real stratosphere quantitatively.178

Holton and Mass (1976); Yoden (1987b); Christiansen (2000), and Finkel et al. (2021) contain179

further details.180

A transition path is defined as an unbroken segment, or trajectory, of the system that begins in a181

region � of state space (a neighborhood of a) and travels to another region � (a neighborhood of182
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b) without returning to �. As in Finkel et al. (2021), we define � and � based on the zonal-mean183

zonal wind at I = 30 km:184

� = {x ∈ R3 :* (30 km) (x) ≥ 53.8 m/s} (12a)

� = {x ∈ R3 :* (30 km) (x) ≤ 1.75 m/s} (12b)

where the velocity thresholds correspond to the vortex strength at 30 km for the fixed points a and185

b, respectively.186

An SSW event is then a transition from � to �, while the reverse, from � to �, represents the187

recovery of the vortex. The definition of � modifies the widely used definition of Charlton and188

Polvani (2007) in two ways. First, we use zonal wind at 30 km above the tropopause (in log-pressure189

coordinates), because 30 km is where the zonal wind profile of b reaches a minimum; Christiansen190

(2000) used this same coordinate when studying the same model. (The standard 10 hPa pressure191

level would correspond to I = −7km× log(10/1000) − 10km ≈ 22 km above the troposphere in192

this model.) We also modify the zonal wind thresholds order to ensure that a ∈ � and b ∈ �.193

An important consequence of our � and � definitions is that the �→ � transition path takes194

∼ 80 days. By design, this includes the slow initial preconditioning stage of vortex breakdown in195

advance of the ∼ 10-day time horizon that traditionally comprises an SSW event. In this paper,196

‘SSW event’ should be interpreted as both the preconditioning and the ensuing vortex collapse.197

Figure 2 shows timeseries of* and E′) ′ at several different altitudes as the system goes through198

several transition paths in a long simulation. As in Fig. 2 of Finkel et al. (2021), orange strips denote199

�→ � transitions while green strips denote �→ � transitions. The long periods in between, which200

we call the �→ � and �→ � phases, demonstrate the bistable nature of regimes � and �. The201

fleeting �→ � phase, however, is what we seek to understand. When the system is en route from202

� to �, we say it is (��)-reactive, using a term from chemistry literature where the passage203
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from � (reactant) to � (product) models a chemical reaction. The following section will introduce204

the reactive density c�� (x) and associated reactive current J�� (x) which help us visualize the205

transition as a path distribution through state space and make the foregoing observations more206

quantitative.207

3. The reactive density and reactive current: A distribution over transition paths208

We consider the long-time behavior of our stochastic Holton-Mass model X(C) undergoing209

transitions between states � and �. Aggregating together statistics from only the transition paths210

yields a probability distribution called the reactive density c�� (x), defined such that211

c�� (x) 3x = P{X(C) ∈ 3x|X(C) is in

transition from � to �} (13)

where 3x is a small region about x. One could estimate c�� by binning samples from a long212

simulation, but including only those samples in transit directly from � to �. Associated to c�� is a213

vector field called the reactive current J�� (x), which quantifies the probability flux passing through214

x per unit time only during transition paths. Roughly speaking, c�� specifies where transition paths215

go, and J�� specifies how they move. Below we define them formally, but Fig. 3(a-c) gives some216

intuition by projecting them on the subspace (*, IHF) at I =10, 20, and 30 km. Background shading217

indicates the strength of c��, and arrows indicate the magnitude and direction of J��. Overlaid in218

thin blue lines are ten randomly sampled transition paths from the long ergodic simulation. These219

sample paths cluster in the same regions of state space identified as high-probability under c��,220

and on average flow along the arrows, corroborating qualitatively that c�� (x) and J�� describe the221

location and evolution of the model in state space.222
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The transition path ensemble shows marked differences between altitudes. At I =10 km, the223

vortex strength (*) of states a and b is about the same, but the IHF is very distinct. The reactive224

current aligns with the IHF axis. Mathematically, this reflects the lower boundary condition* (I =225

0) =*' (I = 0). Physically, this means that the heat flux due to the wave is the dominant physical226

process, with only small changes in zonal wind strength. The higher altitude of I = 30 km, by227

contrast, exhibits a large reduction in zonal wind strength, but only in the late stages of the process.228

In fact, the pattern of reactive density c�� at I = 30 km (panel c) tells us that this final deceleration229

is quite sudden: the magnitude of c�� is large near �, meaning transition paths linger there for a230

long time and only slowly crawl downward and to the right. But at the point IHF(30 km) ≈ 2.5×104231

K·m/s,*(30 km) ≈ 30 m/s (the region marked by a dotted circle in panels c and f), c�� reduces in232

magnitude and the reactive current spreads out widely as it turns downward toward set �. This is a233

signal that the transition paths are becoming both faster and more variable.234

As a further point of comparison with J��, we have plotted the minimum-action pathway from235

� to � with thick cyan lines (section 3 of the supplement specifies the numerical method). This236

represents the most likely transition path in the low-noise limit (e.g., Freidlin and Wentzell 1970;237

E et al. 2004; Forgoston and Moore 2018), and indeed it follows the direction of reactive current.238

With finite noise, however, the transition path ensemble spreads significantly around the minimum-239

action pathway, especially at the higher altitude of 30 km in the late stage of the transition process.240

Because of this, it is not possible for any single pathway, mininimum-action or not, to meaningfully241

represent the full ensemble.242

We will show that the slow, initial phase of SSW involves preconditioning of the vortex: gradual243

erosion of the wind field by the stochastic forcing into a configuration that is especially susceptible244

to wave propagation. Once the wave burst is triggered, it imparts swift changes to the entire245

zonal wind profile. However, the bulk of SSW progress, probabilistically speaking, occurs in the246
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preconditioning phase. Below we make this qualitative description precise by relating the reactive247

current to the forecast functions from Finkel et al. (2021): the committor and expected lead time248

metrics.249

a. Mathematical relationship between current, committor, density, and rate250

To formalize the description above and interpret the current rigorously, some definitions are251

in order, including a brief recap of the quantities from Finkel et al. (2021). Let us fix an initial252

condition X(C0) = x with a vortex that is neither strong nor fully broken down, so x ∉ �∪ �. X(C)253

will soon evolve into either � or �, since both are attractive. The probability of hitting � first is254

called the forward committor (to �):255

@+� (x) = Px{X(g+�∪� (C0)) ∈ �} (14)

where the subscript x denotes a conditional probability given X(C0) = x, and g+
(
(C0) is the first256

hitting time after C0 to a set ( ⊂ R3:257

g+( (C0) =min{C > C0 : X(C) ∈ (}. (15)

Like the expected lead time introduced below, the committor (under various aliases) predates TPT258

as an object of interest in the study of rare events (Du et al. 1998; Bolhuis et al. 2002). However,259

as we will see below, it is a key ingredient in any TPT analysis.260

Our system is autonomous, with no external time-dependent forcing, so we can set C0 = 0 and drop261

the argument from g+
�∪� without loss of generality. The autonomous assumption can be relaxed,262

either by augmenting x with a periodic variable for time (e.g., to include the seasonal cycle) or by263

augmenting � and � to include initial and terminal times (e.g., to better examine climate change264

effects). Periodic- and finite-time TPT has been presented formally in Helfmann et al. (2020), and265

we have applied it to a dataset of state-of-the-art ensemble forecasts in Finkel et al. (2022). As266
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a conceptual demonstration, however, the autonomous Holton-Mass model makes for a clearer267

exposition.268

While g+
�∪� itself is a random variable, one can take its expectation to obtain the expected lead269

time (to �),270

[+� (x) := Ex [g+�∪� |g
+
� < g

+
�], (16)

in other words, the expected time of arrival to � conditional on hitting � first. Finkel et al. (2021)271

described @+
�
and [+

�
in detail, as they are central quantities for forecasting, and visualized them in272

their Figs. 2c,d and 3c in the observable subspace (*, IHF). We do the same here, but additionally273

we overlay the reactive current. In Fig. 3(d,e,f), background shading represents the expected lead274

time and black contours represent committor level sets of 0.1, 0.2, 0.5, 0.8, and 0.9.275

The committor’s contour structure differs a lot between altitude levels. At 10 and 30 km (panels d276

and f), the contours have kinks. Depending on the initial condition, either a fluctuation in* or IHF277

might have a greater effect on the committor. The intermediate altitude of 10 km seems special in278

having committor contours that align with the IHF axis along the main channel of reactive current.279

In other words, @+
�
(x) is well-approximated by a linear function of *(20 km), which is consistent280

with the finding in Finkel et al. (2021) that the 21.5-km altitude holds the most predictive power281

for @+
�
.282

J�� is related to @+
�
, generally flowing up the committor gradient. But J�� contains some key283

information that the committor does not. As a forecast function, the committor does not distinguish284

�→ � transitions from �→ � transitions, where the system leaves state � (beginning to recover),285

but then falls back to the weak-vortex state. To isolate the transition events from � to �, we need286

to introduce the backward committor (to �):287

@−� (x) = Px{X(g−�∪� (C0)) ∈ �} (17)
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where g−
(
(C0) is the most recent hitting time288

g−( (C0) =max{C < C0 : X(C) ∈ (} (18)

Intuitively, @−
�
(x) is the probability of the system at point x last came from �, not �. The backward-289

in-time probabilities refer specifically to the process X(C) in steady-state, allowing us once again290

to set C0 = 0. In other words, @−� (x) depends explicitly on the steady-state probability density c(x),291

where c(x) 3x = P{X(C) ∈ 3x} is the long-term (climatological) probability of finding the system292

in a small region 3x about x.293

Having defined both forward and backward committors, we can express the reactive density as294

c�� (x) =
1
/��

c(x)@−� (x)@
+
� (x) (19)

where /�� is a normalizing constant such that the right-hand side integrates to one. The associated295

reactive current can in turn be expressed296

J�� (x) = @−�@
+
�

[
cv−∇ · (Dc)

]
(20)

+ cD
[
@−�∇@

+
� − @+�∇@−�

]
, (21)

where the diffusion matrix D(x) = 122(x)2(x)
>, and ∇ represents the gradient operator over state297

space.298

Eq. (21) is a specific expression for the current of a diffusion process of the form (8), which is299

the same general formulation as our model. But a more illuminating and general definition is its300

connection to the rate, or inverse return time, of the event (approximately (1700 days)−1 for the301

Holton-Mass model with our chosen parameters). Let � be a closed hypersurface in R3 which302

encloses � and is disjoint with �; we call this a dividing surface. In the context of the diagrams in303

Fig. 3, � is any curve separating region � from region �. Then we have304 ∮
�

J�� ·n3( = Transition rate (22)
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where n is an outward unit normal from � and 3( is a surface area element. The integral rela-305

tionship (22) holds for any dividing surface, implying that the current is divergence-free outside306

of � and �, but has a source in � and a sink in � (see Vanden-Eĳnden (2006) for a thorough307

mathematical explanation of J��.) This constraint immediately implies a link between magnitude308

and width of J�� streamlines. In Fig. 3(c,f), the strong magnitude of J�� near a implies a thin309

central channel, and strict constraints on the mechanisms of early SSW onset. In other words, the310

initial preconditioning phase can only happen in a small number of ways. On the other hand, the311

subsequent weakening of J�� between @+
�
= 0.5 and @+

�
= 0.8 (in the boxed region of Fig. 3c,f)312

implies that paths fan out across state space, becoming more variable. This spreading, or diversity313

of events, is only with respect to * and IHF at 30 km; at the lower altitudes, the current remains314

strong and narrow all the way through the transition process (Fig. 3, columns 1 and 2).315

The reactive current and density characterize the transition path ensemble across the continuum316

of possible pathways, providing more information than the numerical value of the rate itself. Given317

any user-defined set of coordinates, the reactive current projection maps the transition paths in318

those coordinates, as a statistical ensemble with average behavior and variability. Below, following319

a brief note on the computational method, sections 4 and 5 demonstrate how to use reactive current320

and density to describe climatology and strengthen physical understanding of a rare transition321

event.322

b. Computational method323

The quantities presented in section 3, as well as the results to follow, could be computed directly324

by running a model for long enough to undergo a large number of SSW events and analyzing the325

statistics of those transitions. This procedure, which we call the “ergodic simulation” (ES) method,326

is possible in the 75-dimensional Holton-Mass model, and we have performed such a simulation327
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of 106 days for validation purposes. However, this can be a major computational barrier in global328

climate models when the numerical integration is costly and the return period is long compared329

to the simulation timestep. Anticipating the need for fundamentally different techniques in high-330

dimensional state spaces, we have instead used the Dynamical Galerkin Approximation (DGA;331

Thiede et al. 2019; Strahan et al. 2021). A large collection of trajectories are launched in parallel332

with initial conditions distributed across state space, each one running for only a short time relative333

to the return period. Here we use 3×105 trajectories of length 20 days each, which is shorter than334

the 80-day duration of a single SSW event and much shorter than the 1700-day return period.335

Afterward, we assemble all these pieces together to estimate the quantities of interest, exploiting336

the Markov property. The total simulation time is not always reduced by this method—in our case,337

the short simulations total 6×106 days compared with the 1×106-day ES—but the format opens338

the door for many interesting possibilities, such as massive parallelization and adaptive sampling.339

In particular, as we show in Finkel et al. (2022), DGA is uniquely positioned to exploit large340

ensembles of short weather forecasts from high-fidelity operational models.341

The basic DGA algorithm for rare event analysis has been described and tested in a recent series342

of articles (Thiede et al. 2019; Strahan et al. 2021; Finkel et al. 2021; Antoszewski et al. 2021).343

It is closely related to the “analogue Markov chain” approach of Lucente et al. (2021). Recently,344

an approach to learning neural network approximations of forecast functions using short trajectory345

data was introduced in Strahan et al. (2022). Due to the dependence on steady state and backward-346

in-time quantities, a full TPT analysis as carried out in this paper requires additional calculations347

beyond what is described in Finkel et al. (2021). We leave these details to the supplement in order348

to keep the focus on the results of our TPT analysis, which are robust with respect to algorithmic349

parameters.350
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4. SSW composites351

Here we explain the traditional notion of a rare event ‘composite’ and contrast it with the352

composite intrinsically defined by TPT. The results are qualitatively similar, but the TPT description353

allows a rigorous mathematical connection to the reactive current and SSW rate.354

The standard “composite” of an SSW event is a day-by-day aggregate of all the SSW events in355

a given dataset, aligned by the central warming date. This can include statistics, such as the mean356

and quantiles, of any observable function, such as the zonal-mean zonal wind or heat flux. Charlton357

and Polvani (2007) and Charlton et al. (2007) used this method to describe SSW climatology and358

establish benchmarks for stratosphere-resolving GCMs. We form a standard composite of *(30359

km) from our Holton-Mass model in Fig. 4a, averaging together 300 events from a long ergodic360

simulation.361

Here, we propose a complementary “TPT composite” based on reactive density. Instead of362

aligning events by the central warming date, we align the events by a general coordinate 5 (x),363

which can be user-defined but must fulfill the minimal criterion of increasing from � to �, so364

it represents some objective notion of progress. At any progress level 50, the TPT composite is365

defined by restricting the reactive density c�� (x) to the level set {x : 5 (x) = 50}. Fixing 5 = 50 is366

not the same as fixing the lead time g+
�
, because the threshold might be crossed at different times367

by different transition paths. Note that 5 (x) is a deterministic function of initial condition x, unlike368

the hitting time g+
�
, which is a random variable that changes between realizations launched from369

the same initial condition. Therefore, g+
�
cannot itself be used as a progress coordinate.370

In Fig. 4b,c, we juxtapose alternative composites with the standard warming date coordinate371

−g+
�
. In panel b, we aggregate paths based on the negative expected lead time −[+

�
defined above:372

the expected time until the central warming date. −[+
�
is the deterministic progress function that373
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is closest (in the mean-square sense) to the random progress function C − g+
�
defining traditional374

composites. Panel c uses an altogether different progress metric, the committor @+
�
itself, which375

increases from 0 on � to 1 on �.376

The traditional and TPT composites are similar in shape, with an initially gradual decay in377

*(30 km) accelerating into a rapid decline in the final few days. As a function of −[+
�
, *(30 km)378

accelerates steadily through the whole transition, in both the traditional and TPT composites. But379

as a function of committor, *(30 km) decreases linearly at first and then accelerates downward380

between @+
�
= 0.6 and @+

�
= 0.7. According to the standard composite,*(30 km) becomes steadily381

less variable over time, with the whole ensemble collapsing into a single path by construction, as382

C = 0 is the time of the event when *(30 km)= 0. But when viewed as a function of expected lead383

time or committor,*(30 km) becomes more variable in the middle of the path, starting at [+
�
≈ 50384

days or @+
�
≈ 0.65 and lasting until the end, when [+

�
→ 0 and @+→ 1.385

The same variability is reflected in Fig. 3c,f. In the boxed region, the reactive density weakens386

and the reactive current spreads out, some paths turning straight downward into � and others387

accumulating still more heat flux before making the plunge. The @+
�
and [+

�
contours in Fig. 3f388

convey geometrically how it is possible to have such wide variation in zonal wind strength even389

at a fixed expected lead time. Along the central channel of strong reactive current, where most of390

the transition paths flow, the committor and expected lead time have an approximately (negative)391

linear relationship. But in the weak-* flank of the current, especially in the boxed region, the @+
�

392

level sets “unkink” to align with the IHF axis while the [+
�
level sets turn downward to align with393

the* axis. The lowest visible level set of [+
�
thus spans a range of vortex strengths of*(30 km).394

Physically, the TPT composites are more variable than the traditional composite because −[+
�
,395

the expected lead time—a deterministic function—is a coarser description than C − g+
�
, a random396

variable. The former is an average over all realizations, while the latter takes on a specific value for397
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each realization, which is not actually known until after thewarming occurs. Given only information398

on the resolved variables Ψ(I, C) and* (I, C) at a given time, the TPT composite is the best one can399

do. The expected lead time quantifies SSW predictability, as established in Finkel et al. (2021).400

Here, we additionally incorporate the backward committor @−
�
via the reactive density c��, and so401

restrict focus to transition events—“major warmings”—from � to �.402

As a loose analogy, a student’s progress toward a degree can be measured objectively in course403

credits. On the other hand, first-year examsmight weed out half of all students, whichmeans that the404

probabilistic half-way point usually comes before half of required credits are done. A third metric,405

the time until graduation, can vary due to random effects like gap years and pandemics, which406

can cause a student to space their course load unevenly in time. Each cross-section of the student407

population—conditioning on a fixed number of credits completed, probability of graduation, or408

expected time until graduation—is a different statistical ensemble, each one conveying different409

information.410

Going forward, we will use the committor as the progress coordinate of choice. That way,411

each point along the composite is an average over trajectories that are equally predictable in their412

probability to reach �, i.e., to proceed to an SSW. Often it is not just a singular coin toss that413

determines the fate of X(C), but a whole sequence of ‘coin tosses’—random turns through state414

space—aligning in just such a way to navigate from � to �. With the committor as a progress415

coordinate, the ‘coin tosses’ are equidistributed along the horizontal axis, though they may not be416

equidistributed in time.417

The same composite technique can be used to visualize the vertical wind structure at different418

stages. Fig. 5 plots * (I) and E′) ′(I) as altitude-indexed probability distributions at a series of419

committor level sets: @+
�
= 0.1, 0.5, and 0.9. The widening variability with increasing committor420

is faintly visible at low altitudes, but increases dramatically above ∼ 23 km, where at the @+
�
= 0.9421
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level, the mean state (orange curve) falls well below the median state (central gray envelope.) This422

means the distribution of transition states is skewed left by a minority of paths with early collapse423

of upper-level winds. At the same committor range of 0.5-0.9, the vertical profile of meridional heat424

flux inflates dramatically. The altitude range of I = 20-25 km is the key transition region, below425

which zonal wind evolves relatively smoothly and with a symmetric distribution, and above which426

it varies rapidly with a skewed distribution. E′) ′(I) is maximum near this altitude. We speculate427

that the underlying reason is the Newtonian cooling profile U(I), which has its own transition428

region centered at 25 km. It is not surprising that zonal wind just below, at 21.5 km, is an optimal429

linear predictor, as we found in Finkel et al. (2021).430

5. A wave-mean flow interaction perspective431

The previous section presented J�� and c�� as functions of two basic observables, zonalwind and432

integrated heat flux, and constructed a composite evolution of these observables. In this section, we433

incorporate more detailed physical knowledge to improve the interpretability of our TPT results. In434

particular, we manipulate the the dynamical equations to derive an enstrophy budget in the Holton-435

Mass model, which reveals a more natural set of coordinates that separates conservative from436

non-conservative processes. By visualizing the current in these coordinates, we identify physical437

drivers of each stage in the transition process. Our goal is twofold: first, to show how TPT can be438

formulated for any observables, and second, more narrowly in the context of this study, how the439

dynamics become more clear when those observables are well-chosen.440

a. An eddy enstrophy formulation of the Holton-Mass model441

A common diagnostic for wave-mean flow interaction systems is the wave activity, A =442

dB@
′2/(2mH@), whose evolution is related to the Eliassen-Palm (EP) flux divergence (Andrews443
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and McIntyre 1976). Yoden (1987b) used wave activity extensively to analyze the vacillating444

regime (our set �) of the Holton-Mass model, in particular the upward wave propagation that445

destabilizes the vortex. Below we derive a related set of equations for the eddy enstrophy, which446

enjoys a simpler balance equation and which we have found is better numerically suited for TPT447

analysis.448

The first step in deriving the EP relation is to multiply the QGPV equation (4) by @′ and take a449

zonal average, yielding450

mC

(
@′2

2

)
+ E′@′mH@ = @′(sources− sinks) (23)

We wish to work with the projected version of the equation, Eq. (3b), rather than the original451

PDE, to account for the approximation sin2(ℓH) ≈ Y sin(ℓH) introduced by Holton and Mass (1976)452

for projecting quadratic nonlinearities. The procedure is summarized below, and spelled out more453

thoroughly in section 4 of the supplement.454

Because of the ansatz (2), @′ is represented in the projected equations by455

@′←→
[
−G2(:2 + ℓ2) − 1

4
+ m2I

]
Ψ (24)

=: (−X+ m2I )Ψ

where←→ denotes correspondence between the full governing equations and the projected, non-456

dimensionalized equations in the Holton-Mass model. Recall that Ψ is the complex amplitude for457

the zonal-perturbation streamfunction k′(G, H, I, C), in geostrophic balance with the wind (D, E).458

As a general rule, the zonal average of the product of two wave quantities k′1 and k
′
2 of the form459

in Eq. (2).is found by the following formula:460

k′1k
′
2 = Re{Ψ148:G}Re{Ψ248:G} (25)

= Re{Ψ∗1Ψ2}
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Therefore, we multiply both sides of Eq. (3b) by the complex conjugate of (24) and take the real461

part to obtain462

mCE +�@V4 = � (26a)

where463

E = 1
2
4I

�� (− X+ m2I )Ψ��2 (26b)

←→ 1
2
@′2

represents the eddy enstrophy;464

�@ = :4
IIm{Ψ∗ΨII} (26c)

←→ E′@′

represents the meridional eddy PV flux;465

V4 = G2V+ Y
(
G2ℓ2* +*I −*II

)
(26d)

←→ mH@

represents the meridional PV gradient; and466

� = −Re
{
4I

[ (
− X+ m2I

)
Ψ∗

]
×(

mI −
1
2

) [
U

(
mI +
1
2

)
Ψ

]}
←→ @′(sources − sinks)

represents the production and dissipation of enstrophy.467

The standard EP relation would be found by dividing both sides by the meridional PV gradient468

V4, as in Yoden (1987b). Instead, we next turn to the mean-flow equation (3a), which is an evolution469
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equation for the PV gradient V4 rather than* directly. Multiplying through by V4, we find470

mCΓ = 'V4 +�@V4 (27a)

where471

Γ :=
(
V4

Yℓ

)2
(27b)

' :=
2
Yℓ2

4ImI
[
4−IUmI (* −*')

]
(27c)

The new quantity Γ(I) is the squared meridional gradient of zonal-mean potential vorticity, which472

is highly correlated to zonal wind strength * (I) in the Holton-Mass model. ' is a relaxation473

coefficient for Γ, strengthening the vortex via radiative cooling.474

The advantage of this alternative EP relation is now clear: adding together Eqs. (26) and (27),475

the meridional PV transport �@V4 cancels to give476

mC (Γ+E) = 'V4 +�. (28)

In this form, all the dissipative effects are contained on the right-hand side via the cooling coefficient477

U(I), which appears both in � and '. Γ + E would conserved, at every altitude separately, in478

the absence of dissipation and stochastic forcing. In this limit, an increase in eddy enstrophy479

E can only occur at the expense of the mean PV gradient characterized by Γ. Of course, both480

non-conservative effects—dissipation and stochastic forcing—are critically important; vacillation481

cycles and transitions are possible only because the Holton-Mass model, like the full atmosphere,482

is an open system. The utility of Eq. (28) is to isolate those nonconservative effects as almost483

extrinsic inputs.484
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b. Using the reactive current to quantify the importance of non-conservative processes485

Dissipation and forcing act to disrupt the conservation of Γ+E, with a specific pattern shown486

in Fig. 6. The reactive current is shown at three altitudes, as in Fig. 3, but this time in the space487

(Γ1/2,E1/2) instead of (*, IHF). We take square roots because the visualizations are more clear,488

and the units of s−1 are more comparable with those of zonal wind * (I) and radiative cooling489

U(I). (We note that the fixed point b in panel (d) appears to have committor < 1; this is possible490

when projecting out nonlinear coordinates because set � is defined based on the 30-km level,491

and the state-space regions that resemble b at 10 km may not resemble it at 30 km.) In the upper492

stratosphere, at I = 30 km (panels c and f), themain channel of reactive current flows along a circular493

arc, approximately conserving Γ+E, all the way through the @+
�
= 0.9 surface: the evolution of an494

SSW is a nearly conservative interaction between waves and the mean flow right up to the end.495

Then, the current weakens in magnitude and spreads out, indicating the critical non-conservative496

processes at the end, where the breaking and dissipation of the anomalous waves cements the SSW497

event. Just as in the (*,IHF) space, the reactive density c�� decreases along that circular arc,498

meaning the transition paths accelerate.499

On the other hand, J�� projected at I = 10 km (panels a and d) shows that the dynamics are never500

conservative in the lower stratosphere: the initial motion points not along a circular arc but directly501

leftward, such that Γ+E is decreasing from the start. From the enstrophy budget (28), we conclude502

that a combination of dissipation and stochastic forcing acts strongly at 10 km to precondition the503

vortex. The next subsection shows that stochastic forcing plays the more decisive role.504

Finally, consider themiddle altitude of 20 km, where J�� has a shape that is intermediate between505

the current at 10 and 30 km. It does not have distinctly positive or negative curvature, but flows506

along a straight channel from � to �. 20 km seems to be in just the right altitude range to feel507
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significant dissipation and stochastic forcing—a feature of the lower boundary—but also to channel508

a good share of the loss of Γ to the gain of E, a quasi-conservative property of the loftier 30 km. The509

resulting committor, expected lead time, and reactive current are approximately linear functions of510

Γ1/2(20 km) and E1/2(20 km). Indeed, the wind and heat flux at 20 km were the most useful for511

prediction in (Finkel et al. 2021, their section 4).512

Fig. 7a,b,c show the composite evolution of Γ+E in orange, along with Γ in blue and E in pink,513

at the same three altitudes 10, 20, and 30 km. All three altitudes show evidence of dissipation, with514

Γ+E weakening as the committor increases, but with distinct differences in the rates. The Γ+E515

composite is concave up at 10 km, implying dissipation is most important at the early stage, when516

the predictability of the event is limited. At 20 km, the composite is practically linear, implying517

that dissipation maintains a constant role in the event’s evolution, gradually opening the valve to518

wave propagation at the last stage of the event. At 30 km, the composite is concave down: the519

flow is initially conservative, with exchange between mean flow and eddies at the onset of vortex520

breakdown, followed by strong dissipation of the waves when the event is all but assured.521

At 20 and 30 km, the distribution of Γ+E begins symmetric, with the mean (orange) tracking522

the median (near the center of the dark gray band). Then between @+
�
= 0.6 and 0.7, the lower tail523

of the distribution expands quickly, skewing the distribution negative. The distribution at 10 km524

maintains a slight negative skew for the entire transition path. The skewness reflects the occurrence525

of “minor warmings” preceding the SSW, when the vortex begins to break down, but partially526

recovers before the final event.527

The composites, as well as the reactive currents, support the notion of the “typical” transition528

path as an initially non-conservative creep at low altitudes, opening up a valve to allow waves to529

propagate upward, finally yielding a very abrupt collapse at high altitudes follows after a long,530

mostly conservative phase. With the enstrophy budget (28), we can assess the importance of each531
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term by plotting those composites as well. Fig. 7d,e,f show the composite evolution of each term at532

each altitude: 'V4 (the relaxation of the squared mean PV gradient, Γ) in blue, � (the dissipation533

of enstrophy, E) in pink, and V4�@ (the transfer of enstrophy from Γ to E) in black, all normalized534

by the total Γ + E at each level to account for the altitude-dependent differences in variability.535

This allows us to compare how strong each dissipative force is relative to the total budget. The536

sum ('V4 +�)/(Γ+E)—the normalized, deterministic tendency mC (Γ+E)/(Γ+E)—is shown as537

a dashed orange curve. Note that this tendency is positive at 10 and 20 km even though Γ+ E538

is actually decreasing. Without stochastic forcing, the system will always approach state a or b,539

depending on where the initial condition falls relative to the surface dividing the two attractors.540

To quantify the critical role of stochastic forcing in effecting the transition at each committor541

level, we define the stochastic tendency of Γ+E along transition paths:542

L�� [Γ+E](x) = (29)

lim
ΔC→0
E

[
(Γ+E)(X(C +ΔC)) − (Γ+E)(X(C −ΔC))

2ΔC���X(C) = x and X(C) is in transition
]

(30)

which is related to the ordinary infinitesimal generator L (see Oksendal (2003) for mathematical543

background and the appendix of Finkel et al. (2021) for its application to the Holton-Mass model).544

The supplement describes the numerical procedure to approximate L�� using short trajectories545

and a finite lag time. There, we show that L�� 5 (x) is related to J�� · ∇ 5 (x) for any observable 5 ,546

so it is appropriate to view the arrows in Fig. 3 and 6 as a proxy for the stochastic tendencies of the547

projected observables.548
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We introduceL�� to compare with the deterministic tendency mC (Γ+E)(x), which for a diffusion549

process of the form (8) is simply v(x) · ∇(Γ+E)(x) by the chain rule. Their difference shows the550

impact of stochastic forcing responsible for transitions. More specifically, L�� − mC averaged over551

a committor level @0 highlights the stochastic effects responsible for taking the system from @0 to552

@0 + 3@. Often it is not just a single coin flip that decides the fate of X(C), but a whole sequence of553

random turns through state space aligning in just such a way to navigate from � to �.554

The role of stochasticity is most stark at 10 and 20 km (panels (d) and (e)) and for @+
�
< 0.5,555

where L�� (Γ+E) is negative while mC (Γ+E) is positive, due to a strong positive tug of radiative556

cooling versus the weak dissipation of enstrophy. As @+
�
increases, the stochastic and deterministic557

tendencies grow closer together: the more likely the transition to �, the easier it is for deterministic558

drift to carry it out alone. At 30 km (panel f), all forms of dissipation and forcing start out relatively559

small compared to the magnitude of Γ+E, but as the path progresses they all diverge away from560

zero. Most notably, the stochastic and deterministic tendencies never diverge very far; if anything,561

stochastic noise slows the collapse of *(30 km) at the end. It seems that to achieve the �→ �562

transition, which is defined entirely in terms of *(30 km), the most common mechanism is a563

persistent negative push applied to lower altitudes, and this ultimately sets up the higher altitudes564

for more sudden, deterministic collapse after the “hard work” of eroding the vortex from below is565

mostly finished.566

In summary, the TPT diagnostics have demonstrated that the SSW process begins with steady,567

significant decay of the PV gradient (here, its squared gradient, Γ) at lower altitudes, driven568

by the stochastic forcing, with only conservative changes taking place at higher altitudes. This569

preconditioning of the vortex opens up a valve to the mid-stratosphere. In the late stages of the570

transition, starting between @+
�
= 0.6 and 0.7, the upper-level winds decline very suddenly. This571
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begins conservatively as eddies grow, exchanging energy with the mean flow, and finishes non-572

conservatively, as friction dissipates the waves.573

6. Conclusion574

Transition path theory (TPT) is a mathematical framework that can be used to assess the near-575

term predictability and long-term climatology of anomalous weather events. The framework lends576

itself naturally to events associated with regime transitions, but it can be applied to more gen-577

eral anomalies. The key is to be able to define a suitable “reaction coordinate”, or measure of578

progress, linking the event to the mean state. We have analyzed the statistical ensemble of Sudden579

Stratospheric Warmings (SSWs) in the idealized Holton-Mass model. Here, measures of the vortex580

strength (or the mean potential vorticity) and heat flux (eddy enstrophy) provide natural coordinates581

for applying the theory.582

Probability densities and currents tell us how the system evolves through state space during a583

breakdown of the polar stratospheric vortex. The reactive current, J��, allows one to condition584

dynamical tendencies on the occurrence of a rare event. By overlaying J�� over observable sub-585

spaces at different altitudes in the stratosphere, we have identified the key roles of dissipation and586

stochastic forcing in driving SSWs in the Holton-Mass model. The stochastic driving represents the587

effects of unresolved Rossby and gravity waves that have been stripped from this highly truncated588

model. The action of these non-conservative processes, stochastic driving in particular, matter most589

at lower altitudes early in the transition process, conditioning the vortex, while the higher altitudes590

are shielded from significant dissipation. It is only late in the transition process, after the likelihood591

of the event has surpassed 60%, that the upper-level winds play a significant role in the dynamics.592

This work is an early application of TPT to atmospheric science. We believe it holds potential as593

a framework for forecasting, risk analysis, and uncertainty quantification. Thus far, it has been used594
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mainly to analyze protein folding in molecular dynamics, but is now being applied in diverse fields595

such as social science (Helfmann et al. 2021), as well as ocean and atmospheric science (Finkel596

et al. 2020; Helfmann et al. 2020; Miron et al. 2021, 2022). TPT results are best interpreted when597

viewed in a physically meaningful observable subspace of variables. Utilizing physical knowledge598

and experience with the system allows one to gain the most from the methodology. With the599

rather simple Holton-Mass model, we identified such a subspace based on an enstrophy budget. In600

different versions of quasigeostrophic dynamics, the wave activity (Nakamura and Solomon 2010;601

Lubis et al. 2018) and other diagnostics based on the transformed-Eulerian-mean (Andrews and602

McIntyre 1976) are likely to be informative coordinates.603

Significant challenges remain for deploying TPT analysis at scale to state-of-the-art climate604

models. We have used a Dynamical Galerkin Approximation (DGA) short trajectory analysis605

algorithm to compute TPT quantities. One important limitation of this computational pipeline is606

the data generation step. We used a long direct simulation to sample the background climatology,607

which served the double purpose of seeding initial data points for short trajectories and providing608

a ground truth for validating the accuracy of DGA. The former point is critical: one must cover609

the space of initial conditions to capture the dynamics of extreme events. In some cases, short610

trajectory data already exist, e.g., from the subseasonal-to-seasonal (S2S) database (Vitart and611

Robertson 2018), which we have used recently in Finkel et al. (2022) to estimate centennial-scale612

SSW rates from only 21 years of ensemble forecasts. In other cases, it is advantageous to generate613

fresh data in undersampled regions of state space, which would require more advanced sampling614

methods such as the adaptive sampling strategies proposed in Lucente et al. (2021) and Strahan615

et al. (2022), or rare event simulation schemes such as in Mohamad and Sapsis (2018), Ragone616

et al. (2018), Webber et al. (2019), and Ragone and Bouchet (2020).617
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Fig. 1. Parameters and stable equilibria of the Holton-Mass model. (a) The Newtonian cool-813

ing profile U(I). (b) Zonal-mean zonal wind * (I) and (c) perturbation streamfunction814
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Fig. 2. Regime transitions. We plot (a) the zonal-wind strength *, and (b) the eddy heat flux818

E′) ′, over the first 3000 days of a long stochastic simulation. The quantities are evaluated at819

I = 10,20, and 30 km. The time interval contains two transitions from � (a strong vortex)820

to � (a weak vortex) and back. �→ � transitions are highlighted in orange, and �→ �821
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Fig. 3. Currents, densities, committors, and expected lead times. (a): Background shading is the823

reactive density c��, on a log scale. Thin blue lines are ten randomly selected transition824

paths from the long control simulation. Thick cyan curve is the minimum-action path from825

� to �. Also overlaid is a vector field representing reactive current J��. The subspace is826

(*, IHF) evaluated at I = 10 km. Positions of the fixed points a and b are marked. Arrows827

represent J��. (b, c): Same as (a), but at I = 20 and 30 km respectively. (d) The expected828

lead time [+
�
is shaded as background color, and level sets of the committor @+

�
0.1, 0.2, 0.5,829

0.8, and 0.9 are overlaid as black curves. (e, f): Same as (d), but at I = 20 km and 30 km830

respectively. A box marks a transition region between narrow, constrained current and wide,831
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,835
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tendencies are normalized by Γ+ E, as the legend shows, for a comparable vertical scale857
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(a) (b) (c)

Fig. 1. Parameters and stable equilibria of the Holton-Mass model. (a) The Newtonian cooling profile

U(I). (b) Zonal-mean zonal wind* (I) and (c) perturbation streamfunction k ′(G,60◦N, I), with contour spacing

of 1.5× 107 m2/s. Dashed lines mean negative values. Blue indicates the strong vortex equilibrium, a, and red

indicates the weak vortex equilibrium, b, as in Eqs. (12).
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Fig. 2. Regime transitions. We plot (a) the zonal-wind strength *, and (b) the eddy heat flux E′) ′, over the

first 3000 days of a long stochastic simulation. The quantities are evaluated at I = 10,20, and 30 km. The time

interval contains two transitions from � (a strong vortex) to � (a weak vortex) and back. �→ � transitions are

highlighted in orange, and �→ � transitions are highlighted in green.
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(a) (b)

(f)

(c)

(d) (e)

Fig. 3. Currents, densities, committors, and expected lead times. (a): Background shading is the reactive

density c��, on a log scale. Thin blue lines are ten randomly selected transition paths from the long control

simulation. Thick cyan curve is the minimum-action path from � to �. Also overlaid is a vector field representing

reactive current J��. The subspace is (*, IHF) evaluated at I = 10 km. Positions of the fixed points a and b are

marked. Arrows represent J��. (b, c): Same as (a), but at I = 20 and 30 km respectively. (d) The expected lead

time [+
�
is shaded as background color, and level sets of the committor @+

�
0.1, 0.2, 0.5, 0.8, and 0.9 are overlaid

as black curves. (e, f): Same as (d), but at I = 20 km and 30 km respectively. A box marks a transition region

between narrow, constrained current and wide, dispersed current. See text for a description.
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(a)

(b)

(c)

Fig. 4. Composites evolution of SSW events. Orange curves plot the mean value of*(30 km) at a given stage

in the transition process; expanding gray envelopes show the middle 25-, 50-, and 90-percentile ranges. We use

three different notions of progress: hitting time to � (C − g+
�
, panel a), expected hitting time to � (−[�, panel b),

and committor (@+
�
, panel c).
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(a)

(c)

(e)

Fig. 5. Vertical profiles of transition states and tendencies. Left column:* (I) averaged over @+
�
= 0.1, 0.5,

and 0.9. Orange curve is the mean, and gray envelopes represent the middle 25-, 50-, and 90-percentile ranges.

Dashed blue and red curves represent* (I) for the fixed points a and b. Right column: same as left, but for eddy

meridional heat flux E′) ′.

879

880

881

882

47



(a) (b)

(d)

(f)

(c)

(d) (e)

Fig. 6. Current in wave-mean flow coordinates. Same as Fig. 3, but for a different observable subspace

(Γ1/2,E1/2) instead of (*, IHF). See text for definitions. Eddies are characterized by RMS perturbation PV, E1/2,

and the mean flow by the zonal mean PV gradient, Γ1/2.
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(a) (b)

(f)

(c)

(d) (e)

Fig. 7.Enstrophy budget analysis through the �→ � transition. (a) Blue, pink, and orange curves represent

mean values of Γ, E, and their sum at I = 10 km, conditioned on the system being in a transition path and near a

given committor level (which varies along the horizontal axis). Gray envelopes represent the middle 25, 50, and

90-percentile ranges of Γ+E; when the orange curve is not at the center of the gray envelopes, the distribution

is skewed. (b, c): same as (a), but at I = 20 and 30 km respectively. (d) Solid orange curve shows the expected

tendency of Γ+E at 10 km, again conditioned on being in a transition path and near a given committor level.

Dashed orange curve shows the deterministic tendency at the same committor levels; the difference between the

two indicates the role of stochastic forcing. Blue curve shows the relaxation of Γ (the squared meridional PV

gradient), pink curve shows the dissipation of enstrophy, and black curve shows the meridional transport of PV,

�@V4, which when negative indicates a gain for E at the expense of Γ. The sum of the blue and pink curves gives

the dashed orange curve. (e, f): same as (d), but at I = 10 and 20 km respectively. All tendencies are normalized

by Γ+E, as the legend shows, for a comparable vertical scale across altitudes.
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