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Abstract13

Extreme weather events have significant consequences, dominating the impact of14

climate on society. While high-resolution weather models can forecast many types of ex-15

treme events on synoptic timescales, long-term climatological risk assessment is an al-16

together different problem. A once-in-a-century event takes, on average, 100 years of sim-17

ulation time to appear just once, far beyond the typical integration length of a weather18

forecast model. Therefore, this task is left to cheaper, but less accurate, low-resolution19

or statistical models. But there is untapped potential in weather model output: despite20

being short in duration, weather forecast ensembles are produced multiple times a week.21

Integrations are launched with independent perturbations, causing them to spread apart22

over time and broadly sample phase space. Collectively, these integrations add up to thou-23

sands of years of data. We establish methods to extract climatological information from24

these short weather simulations. Using ensemble hindcasts by the European Center for25

Medium-range Weather Forecasting (ECMWF) archived in the subseasonal-to-seasonal26

(S2S) database, we characterize sudden stratospheric warming (SSW) events with multi-27

centennial return times. Consistent results are found between alternative methods, in-28

cluding basic counting strategies and Markov state modeling. By carefully combining29

trajectories together, we obtain estimates of SSW frequencies and their seasonal distri-30

butions that are consistent with reanalysis-derived estimates for moderately rare events,31

but with much tighter uncertainty bounds, and which can be extended to events of un-32

precedented severity that have not yet been observed historically. These methods hold33

potential for assessing extreme events throughout the climate system, beyond this ex-34

ample of stratospheric extremes.35

Plain Language Summary36

Weather extremes are a continually recurring threat to human life, infrastructure,37

and economies. Yet, we only have sparse datasets of extremes, both simulated and ob-38

served, because by definition they occur rarely. We introduce an approach to extract re-39

liable extreme event statistics from a non-traditional data source: short, high-resolution40

weather simulations. With only 20 years of 46-day weather forecasts, we estimate the41

magnitudes of once-in-500-year events.42
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1 Introduction43

The atmosphere’s extreme, irregular behavior is, in some ways, more important to44

characterize than its typical climatology. A society optimized for average historical weather45

patterns is highly exposed to damage from extreme heat and cold, flooding, and other46

natural hazards. Moreover, extremes may respond more sensitively than mean behav-47

ior to climate change, an argument supported by elementary statistics (Wigley, 2009),48

empirical observations (Coumou & Rahmstorf, 2012; AghaKouchak et al., 2014; O’Gorman,49

2012; Huntingford et al., 2014; Naveau et al., 2020) and simulations (Pfahl et al., 2017;50

Myhre et al., 2019). Recent unprecedented extreme weather events demonstrate the se-51

rious human impacts (Mishra & Shah, 2018; Van Oldenborgh et al., 2017; Goss et al.,52

2020; Fischer et al., 2021). The overall “climate sensitivity” (Hansen et al., 1984), sum-53

marized by a change in global-mean temperature, does not do justice to these consequences,54

which has led to the development of “event-based storylines” (Shepherd et al., 2018; Sill-55

mann et al., 2021) as a more tangible expression of climate risk.56

The intermittency of extreme events makes precise risk assessment exceedingly dif-57

ficult. 100 flips of a biased coin with P{Heads} = 0.01 is almost as likely to yield zero58

heads (probability 0.366) as one head (probability 0.370), and half as likely to yield two59

heads (probability 0.185). Similarly, in a 100-year climate simulation or historical record,60

a once-per-century event will more likely appear either non-existent or twice as likely as61

it really is. This difficulty is present for a stationary climate, but worsens in the pres-62

ence of time-dependent forcing, anthropogenic or otherwise. The limited historical record63

forces us to use numerical models as approximations, introducing a dilemma: we can run64

cheap, coarse-resolution models for long integrations, providing reliable statistics of a bi-65

ased system, or expensive, high-resolution models for short integrations, which have lower66

bias but provide statistics with higher variance due to under-sampling. For example, the67

Integrated Forecast System (IFS) of the European Center for Medium-Range Weather68

Forecasts (ECMWF) is one of the most accurate weather models available today, run-69

ning at high resolutions of ∼16-32 km (ECMWF, 2016). The forecasts are skillful, but70

typically last for a single season or less—far too short a duration to estimate rare event71

probabilities directly.72

However, these forecasts are launched multiple times every week in large parallel73

ensembles, which can be exploited to bridge the gap from weather to climate timescales.74
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The key is to include the data from ensemble members in a statistically principled way.75

Our main contribution in this paper is to introduce methods to achieve this, using the76

ensemble forecasts archived in the subseasonal-to-seasonal (S2S) project at ECMWF (Vitart77

et al., 2017).78

Specifically, in this work we estimate probabilities of sudden stratospheric warm-79

ing (SSW) events, in which the winter stratospheric polar vortex rapidly breaks down80

from its typical state with a strong cyclonic circulation over the winter-hemisphere pole.81

The associated subsidence of air in the polar stratosphere leads to adiabatic warming,82

causing lower-stratospheric temperatures to rise up to 40 K or more over a few days (Baldwin83

et al., 2021). The breakdown of the stratospheric vortex exerts a “downward influence”84

on tropospheric circulation (Baldwin & Dunkerton, 2001; Baldwin et al., 2003; Hitch-85

cock & Simpson, 2014; Kidston et al., 2015). The midlatitude jet and storm track shift86

equatorward, bringing extreme cold spells and other anomalous weather to nearby re-87

gions (Kolstad et al., 2010; Kretschmer et al., 2018). For example, King et al. (2019) doc-88

uments the impact of an SSW on extreme winter weather over the British Isles, the so-89

called “Beast from the East” in February 2018. SSWs are a demonstrated source of sur-90

face weather predictability on the subseasonal-to-seasonal (S2S) timescale (Sigmond et91

al., 2013; Butler et al., 2019; Scaife et al., 2022). Pushing this “frontier” of weather fore-92

casting can improve disaster preparation and resource management in the face of me-93

teorological extremes (White et al., 2017; Bloomfield et al., 2021). For these reasons, there94

is keen interest in improving (i) the prediction of SSW itself beyond the horizon of ∼1095

days that marks the current state-of-the-art (Tripathi et al., 2016; Domeisen et al., 2020),96

and (ii) understanding of the long-term frequency and other climatological statistics of97

SSWs (Butler et al., 2015; Gerber et al., 2022).98

2 Data and definitions99

Fig. 1(a,b) shows the evolution of zonal-mean zonal wind at 10 hPa and 60◦N, a100

standard index for the strength of the stratospheric polar vortex (Butler et al., 2019),101

which we abbreviate U . Blue timeseries show U through two consecutive winters: (a)102

1998-1999, in which an extreme SSW occurred as quantified by the deep drop in U in103

mid-December, and (b) 2009-2010, when a more mild SSW occurred in February. Both104

timeseries are superimposed upon the 1959-2019 ERA-5 climatology.105
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U is typically positive throughout the winter months, characterizing a strong cir-106

cumpolar jet that forms in the stratosphere during the polar night. The standard def-107

inition of an SSW event is that U changes sign (Butler et al., 2015), but it does not cap-108

ture the range of intensities between events. Clearly, December 1998 exhibited a much109

stronger breakdown of the vortex than February 2010. More intense SSW events have110

been linked to stronger tropospheric impacts (Karpechko et al., 2017; Baldwin et al., 2021),111

which motivates our efforts to distinguish between them. Historical data can provide rea-112

sonably robust estimates of moderately rare events such as February 2010, in which U113

barely reversed sign; events of this magnitude occur on average every two years. On the114

other hand, extraordinary events like December 1998 have only been observed a few times.115

We define an SSW as the first decrease in U below a threshold U (th) during the “SSW116

season” of Nov. 1-Feb. 28. We only count the first event of a winter to exclude the sub-117

sequent oscillations of U about U (th) as separate SSW events, without complicating the118

definition with a minimum separation time as in Charlton and Polvani (2007). The main119

quantity of interest is the rate: the average number of SSW events per year, a number120

between zero and one. Equivalently, the reciprocal of the rate is called the return period :121

the expected number of years to wait before an event of a given severity. For the stan-122

dard threshold U (th) = 0, the rate is approximately 0.6 (Baldwin et al., 2021), but we123

will consider a range of severities by varying U (th) down to −52 m/s.124

One can estimate the rate with reanalysis by counting the fraction of years with125

an SSW event. Fig. 2a shows two rate estimates derived from ERA5 (Hersbach et al.,126

2020) as a function of U (th): the blue points use 61 years of data (1959-2019) while the127

orange points use only 20 years of data (1996-2015). The corresponding error bars en-128

compass the 50% (thick lines) and 95% (thin lines) confidence intervals of (X1+ . . .+129

Xn)/n, where the Xi’s are independent Bernoulli random variables with success rate given130

by the estimated rate, and a number of trials equal to 20 (blue) or 61 (orange). Fig. 2b-131

e shows the corresponding seasonal distribution of events at four selected thresholds, with132

histograms normalized to have unit area. It may appear inconsistent that the support133

of the distribution at U (th) = −8 is not fully contained in the support of the distribu-134

tion at U (th) = 0; for example, the third blue and orange bins of February have posi-135

tive weight in panel (c), but zero weight in panel (b). There is no contradiction: although136

every winter with an SSW at level −8 also must have an SSW at level 0, the weaker thresh-137

old is crossed first and is sometimes counted in previous weeks.138

–5–



manuscript submitted to AGU Advances

Time 
[days]! − 1 ! ! + 1 ! + 2

1

2

1

2

3

1

2

1

2

3

!!,!#$ =
1 0
1/2 1/2
1/3 2/3

Time 
[days]! − 1 ! ! + 1 ! + 2

(c) Flux-
counting
method

(d) MSM 
method

! + 2

0/4 2/6 1/6 1/4
Daily SSW probabilities

(a)

(b)

Figure 1. Climatology of polar vortex and illustration of dataset. Black curves show

the mean seasonal cycle of u(10 hPa, 60◦N), abbreviated as U , and two gray envelopes show the

percentile ranges 25-75 and 0-100, respectively. All statistics are computed with respect to the

61-year ERA-5 dataset between 1959 and 2019. Two individual years are shown in blue: 1998-

1999 (a) and 2009-2010 (b). Two ensembles of S2S hindcasts (red) are shown each winter, a small

sample from the large S2S dataset of two ensembles per week from the ECMWF IFS. Horizontal

dashed lines mark several different SSW thresholds U (th) used in this study, including the stan-

dard threshold of 0 m/s and several more extreme ones. The time window Nov. 1 - Feb. 28 is

marked by vertical dashed lines. When U crosses U (th) downward for the first time within the

time window, an SSW has occurred. (c): schematic of the flux-counting method. (d): schematic

of the Markov State Model (MSM) method.
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The other estimates displayed in Fig. 2 are derived from the S2S dataset, which139

consists of hindcast trajectories launched in ten-member perturbed ensembles (plus a con-140

trol member that we omit from our analysis). We use only hindcast data produced by141

the 2017 version of the ECMWF IFS: that is, integrations initialized from past initial142

conditions for the 20 years prior, in our case from autumn 1996 to spring 2016 (labeled143

1996-2015 in the plots). Each ensemble member has small perturbations applied to its144

initial conditions, and is integrated forward with stochastically perturbed tendencies (Buizza145

et al., 1999; Berner et al., 2009). For details on the the model, see Vitart et al. (2017)146

and ECMWF (2016). The dataset is publically accessible at https://apps.ecmwf.int/147

datasets/data/s2s/.148

The total number of days contained therein is roughly149

20 years× 17 weeks

winter
× 2 ensembles

week
× 10 members

ensemble
× 47 days

member
= 3.2× 105 days ≈ 875 years

(1)

150

151

Many of these extra ensemble members reach farther into the negative-U tails than the152

reanalysis. Thinking of these as alternative realities, we can calculate otherwise inacces-153

sible probabilities.154

3 Two estimates of long return times from short trajectories155

To take advantage of the S2S data, we have to overcome two complications. First,156

not all trajectories are independently sampled: on the contrary, all members of an en-157

semble are initialized close to reanalysis, and take several days to separate. Thus, the158

effective sample size is smaller than 875 years. Second, no individual ensemble can di-159

rectly provide an SSW probability beyond the 46-day time horizon, which is well short160

of the 120 days between November 1 and February 28 when SSWs are allowed to hap-161

pen. We cannot use hindcasts directly to estimate the rate, because we need to know162

what would have unfolded if the 46-day simulation were to continue. The challenge is163

to make use of the “hanging” trajectory endpoints, such as the eight members of the first164

ensemble shown in Fig. 1 which do not dip below the threshold. Below, we present two165

related, but distinct methods: flux-counting and Markov state modeling.166
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(a) (b)

(c)

(d)
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Figure 2. Rate estimates derived from S2S and reanalysis. Left: SSW rate (inverse

annual probability of SSW) as a function of zonal wind threshold, U (th), estimated by the four

methods described in the text. Error bars indicate 95% confidence intervals. MSM and flux-

counting error bars are computed by bootstrapping on entire years of data. ERA5 error bars are

computed analytically as the 2.5-97.5 percentile range of the success rate of a binomial random

variable with a success probability given by the estimated rate and a number of trials given by

the number of years in the record (20 or 61). Error bars going off the bottom of the plot include

zero (note the log scale). Right: seasonal distribution of SSW events at four selected thresholds,

according to each of four methods. All histograms have a bin width of 7 days and are rescaled to

have unit area.
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3.1 Flux-counting for direct estimates167

The first approach is quite simple, as sketched in Fig. 2c: we compute the prob-168

ability of an SSW on each day by calculating the fraction of trajectories that cross the169

threshold on that day (avoiding double counting by keeping track of “active” trajecto-170

ries as detailed below), and then sum up all the daily probabilities over the season. For-171

mally, we decompose the winter months of interest into a sequence of one-day windows,172

which is the sampling resolution of S2S:173

T0 = Nov 1, T0 + 1 = Nov. 2, . . . , T1 = Feb. 28 (2)174
175

and estimate the probability of an SSW separately for each calendar day. By our def-176

inition, an SSW can happen at most once per season, to ensure the events are disjoint177

and have additive probabilities:178

Rate =

T1∑
t=T0

P{SSW on day t} (3)179

=

T1∑
t=T0

P
{

min
T0≤s<t

U(s) > U (th) and U(t) ≤ U (th)
}

(4)180

181

The summand can be considered a probability per day of crossing the threshold182

U (th), i.e., one of the horizontal dashed lines in Fig. 1a,c. It is estimated by averaging183

over all hindcast trajectories that are “active” on calendar day t, meaning those launched184

some day between t−46 and t. More precisely, if we enumerate the active trajectories185

by i ∈ I(t) = {1, ..., N(t)} and denote the i’th trajectory’s zonal wind by Ui, then the186

estimate of daily SSW probability is187

P{SSW on day t} =
1

N(t)

∑
i∈I(t)

I
{

min
T0≤s<t

Ui(s) > U (th)
}
I
{
Ui(t) ≤ U (th)

}
(5)188

189

where I is an indicator function, equal to 1 if the argument is true and 0 if the argument190

is false. In words, we count the trajectories that dip below U (th) for the first time on day191

t, as a fraction of all trajectories that are active on that day. The past of ensemble mem-192

ber i before its initialization date is given by the corresponding reanalysis from which193

it branched.194

Summing up these probabilities from Nov. 1 to Feb. 28, and sweeping over all thresh-195

olds U (th), we obtain the black curve in Fig. 2a. Error bars come from a bootstrapping196

procedure: we apply the estimate (5) to 20 different random 10-year subsets of {1996, . . . , 2015},197

calculate the 2.5th and 97.5th percentiles of rate estimates, and form the pivotal 95%198
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bootstrap confidence interval (see Wasserman (2004), chapter 8, for a formal account,199

although we have modified the procedure by sampling without replacement to maintain200

independence of different years.)201

The average (5) is a sum of dependent random variables, with all ensemble mem-202

bers in a given year sharing common history. This increases the variance of the estima-203

tor or, in other words, reduces the effective sample size from 875 years. This situation204

is common in the Monte Carlo simulation for inverse problems. But the error bars make205

clear that flux-counting enjoys a tremendous advantage over the direct ERA5 estimate.206

At all thresholds, the flux-counting error bar overlaps with the ERA5 error bar, but is207

much smaller. This gives us confidence to trust the flux-counting estimate farther into208

the tail where no ERA5 data are available.209

3.2 Markov state model210

The second method is more intricate, but delivers more insight into the predictabil-211

ity of SSWs. We construct a Markov state model (MSM) (Deuflhard et al., 1999; Pande212

et al., 2010; Chodera & Noé, 2014) which is sketched in Fig. 2d. On each day t, we par-213

tition state space into a disjoint collection of bins St,1, St,2, . . . , St,Mt
and approximate214

the transition probability matrix for each time-step from t to t+ 1,215

Pt,t+1(j, k) = P{X(t+ 1) ∈ St+1,k|X(t) ∈ St,j}, (6)216
217

by counting the transitions between corresponding boxes. Explicitly,218

Pt,t+1(j, k) =

∑
i∈I(t) I{Xi(t) ∈ St,j}I{Xi(t+ 1) ∈ St+1,k}∑

i∈I(t) I{Xi(t) ∈ St,j}
(7)219

220

The matrices are row-normalized, which corrects for the redundancy and statisti-221

cal dependence between ensemble members. This sequence of matrices is the key ingre-222

dient that enables all downstream calculations. Choosing the partition of state space is223

a crucial step which involves a tradeoff: too few clusters will coarsen the dynamics too224

much, whereas too many clusters will reduce the number of data points in each cluster225

and thus increase the statistical noise involved in estimating Pt,t+1(j, k). There is a lack226

of general theory on how to construct MSMs, but here we exploit the particular struc-227

ture of the dataset to validate our algorithmic choices, as explained in the supplement.228

Here, we focus on conveying the general MSM procedure.229
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We build the sets St,i using k-means clustering of the data using the scikit-learn230

package (Pedregosa et al., 2011). As input to k-means, we use a vector of feature Φ con-231

sisting of time-delays of U :232

Φ(X(t)) = [U(X(t)), U(X(t− 1)), . . . , U(X(t− δ + 1))] (8)233
234

where δ days is the number of retained time-delays. This time-delay embedding encodes235

additional information about the atmospheric state, enabling a model based just on the236

zonal mean wind at 10 hPa. Heuristically, the embedding captures approximate time-237

derivatives up to order δ-1. The technique has precedent in climate science (Ghil et al.,238

2002), and a growing body of theoretical and empirical evidence supports the use of time-239

delay coordinates as reliable features for encoding dynamical attractors (Takens, 1981;240

Kamb et al., 2020; Broomhead & King, 1986; Giannakis & Majda, 2012; Brunton et al.,241

2017; Thiede et al., 2019; Strahan et al., 2021). We have also experimented with richer242

feature spaces including EOFs of geopotential height, but found it unnecessary.243

We find that any δ from 2 to 10 and any number of clusters (denoted Mt) from 50244

to 150 gives similar results. In Fig. 2 we display results of a single representative choice245

of δ = 5 days and Mt = 150, along with a shaded 95% confidence interval derived from246

the pivotal bootstrap procedure (Wasserman, 2004) with 20 independent resamplings of247

the data (but without replacement). The supplement further explains how we selected248

these parameters to simultaneously optimize the MSM’s fidelity and robustness on a sim-249

ple performance benchmark. We emphasize that these clusters are not supposed to iden-250

tify metastable weather regimes in the tradition of, e.g., Michelangeli et al. (1995); rather,251

they are a discretization of state space meant to represent continuous functions over that252

space, encoding gradual progress towards an SSW event.253

Given the clusters {St,j} and the transition matrices {Pt,t+1}, we can calculate the254

rate and seasonal distribution of SSW events with the following procedure.255

1. Let B denote the set of “weak-vortex” clusters: all (t, j) such that T0 ≤ t ≤ T1256

and the majority of data points in St,j have U < U (th). Let A denote the set of257

“non-winter” clusters: all (t, j) such that t < T0 or t > T1. With this setup, an258

SSW event is a transition from A to B.259

2. Compute the committor probability,260

q+t (j) = P
{
U(s) ≤ U (th) for some s ∈ [t, T1]

∣∣∣ X(t) ∈ St,j

}
, (9)261

262
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by solving the following terminal/boundary-value problem. By definition, q+T1+1(j) =263

0 for all clusters j at the end of winter, while q+t (j) = 1 for all (t, j) ∈ B. Step-264

ping backward through time, we have a recursion relation:265

q+t (j) =

Mt+1∑
k=1

Pt,t+1(j, k)q
+
t+1(k). (10)266

267

In words, for a vortex that is initially strong today (t) to break down by Feb. 28268

(T1), it must break down sometime between tomorrow (t+1) and T1. Hence q+t (j)269

is a weighted combination of q+t+1(k) for all possible scenarios k for tomorrow. This270

equation is simply the Kolmogorov Backward Equation in discrete form (E et al.,271

2019). In this light, viewing Eq. (10) as a discretized partial differential equation,272

the clusters {St,j} can be seen as members of a finite element basis and Pt,t+1(i, j)273

as stiffness matrices. Indeed, here we use an MSM as a “dynamical Galerkin ap-274

proximation”, a basis expansion approach to computing forecast quantities like275

the committor probability from short trajectory data that was originally devel-276

oped for chemistry applications (Thiede et al., 2019; Strahan et al., 2021) and has277

recently been applied to climate dynamics (Finkel et al., 2021, 2022; Jacques-Dumas278

et al., 2022).279

3. Estimate an empirical probability distribution over clusters at the beginning of280

winter,281

πT0
(j) = P{X(T0) ∈ ST0,j} (11)282

283

However, in practice, the result is not sensitive to the choice of initial probabil-284

ity distribution. This is because T0 is early enough in the winter season that the285

distribution of U is still narrow (see Fig. 1) and the memory of initial conditions286

is practically erased by the time of the first SSW. We can also propagate π to each287

day of the season, using the Kolmogorov Forward equation (a.k.a. the Fokker Planck288

equation) in discrete form:289

πt+1(k) =

Mt∑
j=1

πt(j)Pt,t+1(j, k) (12)290

291

4. Compute the rate as the average of committor probabilities on the first day of the292

SSW season, weighted by the probability distribution πT0 :293

R =

MT0∑
j=1

q+T0
(j)πT0

(j) (13)294

295
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In words, the probability of SSW in a random year is the sum of probabilities from296

every possible initial condition, weighted by the probability of that initial condi-297

tion. Fig. 2 shows in purple the rate according to the MSM , which matches re-298

markably well with the flux-counting method. Error bars indicate the 95% con-299

fidence interval, obtained with the same bootstrapping procedure that we used for300

flux-counting. In particular, the entire clustering procedure is repeated for each301

10-year subset of data.302

5. Compute the seasonal distribution by decomposing the rate over all possible en-303

trance times to B, rather than exit points (i.e., initial conditions) from A:304

R =

T1∑
t=T0−1

Mt∑
j=1

Mt+1∑
k=1

q−t (j)Pt,t+1(j, k)I{(t+ 1, k) ∈ B} (14)305

306

where q−t (j) = P{no SSW has occurred yet between T0 and t|X(t) = j} is known307

as the backward committor. The backward committor obeys a recursion analogous308

to that of q+t , but moving backward through time and with a time-reversed tran-309

sition matrix:310

q−t+1(k) =



∑Mt

j=1 Pt,t+1(j, k)
πt(j)

πt+1(k)
q−t (j) (t, j) /∈ A ∪B

0 (t, j) ∈ B

1 (t, j) ∈ A

(15)311

312

The purple histogram in Fig. 2b-e is given by the individual summands (in groups313

of 7, according to the bin width of 7 days).314

The committor, defined in step 2 above, measures probabilistic progress towards315

an SSW event (how likely). To measure temporal progress (how soon), we further de-316

fine the hitting time as317

τ+t = min{s ≥ 0 : (t+ s,X(t+ s)) ∈ B} (16)318
319

This is a random variable that tells you the timing of the SSW, depending on the real-320

ization of X. We compute two summary statistics of this random variable. First, its cu-321

mulative probability mass function P{τ+t < σ} is a time-limited version of the commit-322

tor, which we use to validate our choice of MSM parameters following Benedetti (2010)323

and Miloshevich et al. (2022) for a standardized measure of prediction skill (see the sup-324

plement). Second, the average value of τ+t , conditional on the vortex actually breaking325

–13–



manuscript submitted to AGU Advances

down the same winter, is called the expected lead time:326

η+t = E
[
τ+t |t+ τ+t ≤ T1

]
(17)327

328

This is another useful summary statistic to quantify how far away the system is from an329

SSW event. We displayed a similar quantity in (Finkel et al., 2021, 2022) in the context330

of an idealized model. The expected lead time can also be computed by recursion with331

the MSM, but the formula is slightly more involved and left to the supplement.332

Let us take a brief aside to reference some mathematical context for the method333

above. The general framework that we have used to combine committor probabilities to334

compute rates and other steady-state statistics of rare transitions is transition path the-335

ory (TPT) (Vanden-Eijnden, 2014). TPT has been applied to molecular dynamics (Noé336

et al., 2009; Meng et al., 2016; Strahan et al., 2021; Antoszewski et al., 2021), atmospheric337

and oceanic sciences (Finkel et al., 2020, 2022; Miron et al., 2021, 2022) and social sci-338

ences (Helfmann et al., 2021). Though TPT is typically formulated in a time-homogeneous339

setting, here we have built in explicit time-dependence to deal with the seasonal cycle,340

similarly to (Helfmann et al., 2020).341

Our MSM-based approximation of the committor probability is similar in spirit to342

analogue forecasting (van den Dool, 1989), which is enjoying a renaissance with novel343

data-driven techniques, especially for characterizing extreme weather (Chattopadhyay344

et al., 2020; Lucente et al., 2022). Dynamical Galerkin approximation (using a basis dif-345

ferent than the one used here) and a short trajectory variant of analogue forecasting are346

tested on several benchmark problems in (Jacques-Dumas et al., 2022). Formally, the347

transition operator encoded by the matrix in (6) is related to linear inverse models (Penland348

& Sardeshmukh, 1995), which have also been used to predict subseasonal extremes (Tseng349

et al., 2021). Both MSMs and linear inverse models involve finite-dimensional approx-350

imations of the transition operator (or Koopman operator for deterministic dynamics)351

(Mezić, 2013; Mezić, 2005; Klus et al., 2018).352

4 Results353

4.1 Rate estimates354

Fig. 2 compares rate estimates from the MSM and flux-counting methods against355

the reanalysis rates. We include the ERA-5 estimator based on just 1996-2015 to over-356
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lap with the S2S period. For the mild thresholds of U (th) = 0,−4 m/s, corresponding357

to return times of 2-3 years, the MSM and flux-counting estimates agree with both short-358

and long-term reanalysis estimates. Moving to moderate thresholds of U (th) ∼ −28 m/s,359

the MSM and flux-counting rates track somewhat closer with the 61-year estimate (or-360

ange), which has slightly lower rates across the board. The S2S data were initialized from361

the 20-year time period corresponding to the blue curve, but the S2S hindcasts recover362

the longer-term climatology, despite the (slightly) greater frequency of SSWs of this in-363

tensity from the period in which they were initialized.364

One can think of these SSW frequencies as the climatology according to the Inte-365

grated Forecast System, given the boundary conditions of the 1996-2015 period. At least366

in the “model world” of the IFS, it does not appear that a differences in atmospheric bound-367

ary conditions (e.g., sea surface temperatures) caused a systematic increase in intense368

SSWs between 1996 and 2015; rather the observed increase in SSWs was luck of the draw.369

It is possible, however, that systematic model error could be obscuring the systematic370

differences suggested by Reichler et al. (2012) and Dimdore-Miles et al. (2021).371

At all levels of U (th), but especially in the negative extremes, the confidence inter-372

vals from the two S2S estimates are smaller than those from the ERA5 estimates, thanks373

to the large amount of S2S data that the MSM and flux-counting methods can exploit.374

The agreement between MSM and ERA-5 on common events gives us more confidence375

to trust the MSM on less common events in the negative-U (th) tail, where ERA-5 data376

are too sparse to give a meaningful rate estimate. Both the direct counting and MSM377

approaches suggest the potential for events where the vortex becomes so disrupted it spins378

-40 m/s (stronger than average, but in the opposite direction), albeit only once or twice379

in a millennium.380

Several recent studies have performed the same task of filling out a sparse climate381

distribution using models (Horan & Reichler, 2017; Kelder et al., 2020), but with unin-382

terrupted long runs of a global climate model. The techniques we have introduced—MSM383

and flux-counting—offer a novel way to estimate such quantities from short trajectories384

only, without access to a centennial-scale run of the IFS which the standard estimation385

method would require. We believe the higher resolution IFS is also more appropriate for386

capturing the most extreme SSWs.387
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4.2 Seasonal distribution388

Fig. 2b-e illustrates that S2S data also offers an advantage for describing the sea-389

sonal distribution of SSW events, an inherently noisier statistic than the full-winter rate390

estimate because one has to split the data into finer categories. The S2S-derived histograms,391

in black and purple, are able to bring out seasonal structure that is ambiguous in the392

reanalysis data directly. For U (th) = 0 m/s, there is a gradual increase in SSW frequency393

from November to January, followed by a plateau in February, consistent with prior stud-394

ies of seasonality at monthly resolution (Charlton & Polvani, 2007) and supporting the395

late winter maximum found by Horan and Reichler (2017).396

As U (th) becomes more negative, the reanalysis histograms dwindle and degener-397

ate into a few isolated spikes, whereas the S2S histograms become intriguingly bimodal,398

but retain their smoothness. The S2S histograms show a persisting SSW occurrence through-399

out February after the second peak, a feature that is also faintly present in the longer400

reanalysis period (1959-2019), but not at all in the shorter reanalysis period (1996-2015)401

from which S2S was initialized. Again, the IFS recovers features of the longer-term cli-402

matology.403

The January/February peak is documented in the literature, e.g., by Horan and404

Reichler (2017), who diagnosed the peak as a balance between two time-varying signals:405

the background strength of the polar vortex, and the vertical flux of wave activity ca-406

pable of disturbing the vortex. The bimodal structure seen in S2S has also been found407

tentatively in prior studies with both reanalysis and models (Horan & Reichler, 2017;408

Ayarzagüena et al., 2019), and more robustly in other features of the boreal winter, e.g.,409

the midwinter suppression of Pacific storm activity (Nakamura, 1992). We speculate that410

the early peak represents Canadian warmings (Meriwether & Gerrard, 2004), which our411

result suggests may deserve a more decisive classification. Seasonal differences are as-412

sociated with dynamical differences in SSW events. For example, “Canadian warmings”413

shift the Aleutian high and occur earlier in the winter (Butler et al., 2015). Categoriz-414

ing SSWs by their seasonality may reveal preferred timings that indicate when and why415

the polar vortex is most vulnerable (Horan & Reichler, 2017).416
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(b)(a)

Figure 3. Sparse regression results. Heat maps show the importance of each feature

(listed on the vertical axis) for predicting the expected lead time η+ at a range of zonal wind

thresholds U (th) (listed along the horizontal axis). The left-hand heat map shows the LASSO

coefficients, and the right-hand panel shows Gini importances from random forest regression. We

also used u at lower levels than 10 hPa as input features, but found none of them to have any

importance, and so omitted them from the figure.
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4.3 Statistical predictors of SSWs417

Estimates of long return times alone do not provide physical insight into the mech-418

anisms driving the event. The committor probability and expected lead time estimates419

provided by the MSM approach encode information on the dynamics and predictabil-420

ity of SSW events, and on extreme events in general. These quantities cannot be com-421

puted by the flux-counting approach. A number of recent articles have pursued commit-422

tor probabilities as windows into transitional dynamics, e.g., Miloshevich et al. (2022)423

for European heat waves and Frishman and Grafke (2022) for the spread of turbulence424

in a pipe. On SSWs specifically, our own previous studies with a simple SSW model (Finkel425

et al., 2021, 2022) found through sparse regression that a small set of physical variables426

could explain key variability in the committor.427

Here we analyze the S2S dataset in a similar way, using sparse regression to reveal428

the main determinants of the committor q+t (how likely is an SSW to occur?) and ex-429

pected lead time η+t (if it does occur, how soon?), among a large collection of candidate430

variables including zonal-mean zonal winds and meridional eddy heat fluxes at various431

time delays, altitudes, and wavenumbers (listed on the left of Fig. 3). We have performed432

two kinds of regression: linear regression with a sparsity-promoting L1 penalty of 0.1,433

also known as LASSO (Tibshirani, 1996), and random forest regression (Hastie et al.,434

2009) with 10 trees of depth 3. Both algorithms, as implemented using scikit-learn,435

provide not only predictions of the output variable but also notions of relevance for each436

input feature: nonzero coefficients in the case of LASSO, and Gini importances in the437

case of the random forest (Pedregosa et al., 2011). These relevances are of greater in-438

terest to us than the raw skill of the regression.439

We focus on the early part of the SSW season to connect the results with the rate440

formula (13). The target variable for regression is log(η+t ), which guarantees the predicted441

η+t is positive and also emphasizes variability in small values of η+t (when an SSW is close)442

rather than large values (when an SSW is distant). The training data consist of trajec-443

tory snapshots as inputs and MSM-labeled η+t values as outputs. We include only those444

snapshots between Nov. 1 and Nov. 30, and strictly outside of sets A and B, where 0 <445

q+t < 1. (We also regressed on q+t and discovered similar but more subtle patterns of446

importance; for brevity we show results only for η+t .)447
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Fig. 3 summarizes the results of regression across all U (th) thresholds. Random for-448

est importances are always nonnegative and represented on a yellow-black color scale,449

while regression coefficients are signed and represented on a red-blue color scale. Red450

is associated with a weaker vortex, meaning a shorter lead time. The correlation coef-451

ficient R2 remains between 0.4 and 0.6 for both methods across all thresholds, indicat-452

ing that these regressions are imperfect expressions of the expected lead time, but do ex-453

plain a significant part of the variance.454

The models illuminate some interesting patterns, some obvious and some surpris-455

ing. A priori, one expects u(10 hPa, 60◦N, t) itself [the bottom listed feature, abbrevi-456

ated U(t)] to dominate the regression, since it defines the event. This is true at a mild457

threshold of U (th)—stronger zonal wind means longer expected lead time, according to458

the positive coefficient in the panel’s lower right corner—but for more extreme thresh-459

olds, it is actually the time-delayed zonal wind U(t−1), . . . , U(t−4) that is more rele-460

vant. Furthermore, the corresponding LASSO coefficients are negative, suggesting that461

the decrease over time of U is more important than its value today. At the most extreme462

thresholds, it even appears that strong U(t) portends a sooner vortex collapse, suggest-463

ing that the most extreme SSW events (those reaching the most negative zonal wind)464

follow from precursor states with anomalously strong zonal wind.465

Studies with reanalysis and idealized models (e.g., Charlton & Polvani, 2007; Jucker,466

2016) have found a similar pattern of strengthening zonal wind, as well as meridional467

potential vorticity gradient, prior to strong SSW events. These effects are components468

of preconditioning, wherein the vortex develops a sharper edge and becomes more sus-469

ceptible to the frequent upward bursts of wave activity emanating from the troposphere470

(e.g., Albers & Birner, 2014). The presence of the same pattern in S2S is an encourag-471

ing signal of physical consistency across the model hierarchy.472

Another important set of features is the 10-day averaged meridional heat flux vT473

averaged over 45-75◦N, although LASSO and Random Forest regressions emphasize dif-474

ferent altitudes and wavenumber components. Both methods agree that the 10 hPa heat475

flux at wavenumbers 0 and 1 exert strong and competing (statistical) influences on ex-476

pected lead time: a stronger wavenumber-0 component (vT ) means vortex collapse is far-477

ther away, while a stronger wavenumber-1 component means vortex collapse is sooner.478

At lower levels of the atmosphere, the eddy heat fluxes exert significant but diminish-479
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(b)(a)

(d)(c)

Figure 4. Committor and expected lead time. Aggregating all S2S data from Nov. 1 to

Nov. 30, this figure displays the committor (left column) and expected lead time (right column)

in shading, as well as the climatological probability density π in black contours, on a logarithmic

scale (π has arbitrary units, normalized to have unit integral over state space). Two zonal wind

thresholds are considered: 0 m/s (top), and −8 m/s (middle) (bottom). All results are derived

from the MSM. We show η+ and q+ as functions of two variables only: u(10 hPa, 60◦N, t) and

meridional heat flux averaged over 10 days between 45◦N and 75◦N at 100 hPa and wavenumber

1. The remaining variables are averaged out and weighted by π in this display.

ing influences, although they remain important for the most extreme SSW events (at least480

according to LASSO).481

How can we make sense of all these correlations? One simple method of visualiza-482

tion is to plot the committor and lead time as approximate functions of two variables483

(averaging over remaining variables). The regression results present us with many pos-484

sible pairs of important variables. Here we select just one pair: zonal-mean zonal wind485

at 10 hPa, and wavenumber 1 meridional heat flux at 100 hPa, averaged over the pre-486

ceding 10 days. The latter feature is assigned high importance by the random forest, though487
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not by LASSO, and is especially interesting as a signal coming from a lower altitude than488

10 hPa, possibly related to the two-way influence characteristic of coupled troposphere/stratosphere489

dynamics. Fig. 4 displays the committor (left column) and expected lead time (right col-490

umn) as a function of these two variables at two thresholds: U (th) = 0 m/s (top), and491

−8 m/s (bottom). Contours of the climatological probability density π signal which re-492

gions are more frequently visited and which ones are rare. We only average over the first493

month of the SSW season, Nov. 1-Nov. 30, to represent a map of possible “initial con-494

ditions” for the winter vortex evolution.495

The orientation of contours in phase space reveals a pattern of influence that would496

be hard to intuit from the regression coefficients alone. At U (th) = 0, the q+ contours497

run almost perpendicular to the U axis, confirming that the zonal wind itself primar-498

ily determines how likely an SSW is for the coming season. But the η+ contours tell a499

different side of the story: at stronger U , the contours progressively tilt away from ver-500

tical towards horizontal, indicating that the time until SSW depends strongly on heat501

flux—at least in the regime of strong U , from where an SSW is unlikely to begin with.502

The influence of heat flux grows more significant as the threshold U (th) is lowered in row503

2 of the figure, even for the committor. We infer a general pattern: the 10-hPa zonal wind504

strength in November determines how likely an SSW is for the coming winter, but when505

it is rather unlikely, the lower-stratospheric wavenumber-1 heat flux determines when506

the SSW will happen.507

What the phase space images reveal most of all is that q+ and η+ are nonlinear508

functions: the influence of a variable depends on the state of all the other variables. Non-509

linear regression methods, such as random forests, are therefore crucial to uncover a com-510

plete description. Given the mature wave-mean flow interaction theory of SSWs, there511

are many other features likely to be as good or better at predicting SSWs. For exam-512

ple, from a long GCM integration, (Jucker & Reichler, 2018) found that meridional po-513

tential vorticity gradient and 100-hPa meridional heat flux—representing vortex precon-514

ditioning and wave activity respectively—can change SSW probability by roughly an or-515

der of magnitude at a one-week lead time, and still significantly at seasonal-scale lead516

times. At present, we have limited our regression analysis to features that are easy to517

compute without introducing noise by differentiation. But more specific physical hypothe-518

ses can be tested by enlarging the feature space to include the relevant terms. The same519

principle holds for other extreme events besides SSWs.520
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5 Discussion521

By comparing S2S results with reanalysis, we are measuring the composition of po-522

tentially three separate error sources: (i) forecast model error, (ii) non-stationarity of523

the climate with respect to SSW events over the reanalysis period, and (iii) numerical524

errors, both statistical (from the finite sample size) and systematic (from the projection525

of forecast functions onto a finite basis in the case of the MSM). We briefly address each526

error source in turn.527

The S2S trajectories were realized only in simulation, not in the physical world. Ac-528

cordingly, our S2S estimates apply strictly to the climatology of the 2017 IFS, a statis-529

tical ensemble that could (at least in principle) be concretely realized by running the model530

uninterrupted for millennia, with external climatic parameters sampled from their vari-531

ability in the 20-year time window of 1996-2015. Long, equilibrated simulations have been532

performed with coarser models by, e.g., Kelder et al. (2020) to assess UK flood risk (the533

so-called “UNSEEN” method), and by Horan and Reichler (2017) to assess SSW frequen-534

cies, but this is not practical given the constraints and mission of the ECMWF IFS. The535

S2S dataset is an ensemble of opportunity. It was created to compare the skill of differ-536

ent forecast systems on S2S timescales, not at all for the purpose of establishing a cli-537

matology of SSWs.538

And while the IFS model has proven outstanding in its medium-range forecast skill539

(Vitart, 2014; Kim et al., 2014; Vitart & Robertson, 2018), it was designed for short fore-540

casts. It is not clear how it would behave if allowed to run for hundreds of years as a cli-541

mate model, which requires careful attention to the boundary condition and conserva-542

tion issues. Even if the climate were to remain stationary with its 1996-2015 parame-543

ters, numerical and model errors would inject some bias into the equilibrated simulation.544

Repeatedly initializing S2S forecasts with reanalysis ensures a realistic background cli-545

matology, and allows us to rely on the IFS strictly for the short-term integrations that546

it was designed for. Our method may be used as a diagnostic tool to compare different547

models against each other, with specific attention paid to their rare event rates. A use-548

ful extension of this work would be to repeat the analysis on multiple data streams from549

all 11 forecasting centers worldwide that contribute to the S2S project, as a different way550

to compare different models’ ability to represent extremes.551
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Boreal SSWs provide an ideal demonstration of our method, providing both mod-552

erately and extremely rare events. A natural and intriguing future application is the rate553

of Southern-hemisphere SSW events, in the spirit of (Jucker et al., 2021), which is post-554

poned to future work for the sake of brevity. The method may be extended to other kinds555

of extremes as well, though care must be exercised when defining the event (e.g., sets A556

and B) and choosing features in which to do clustering (for the MSM approach), espe-557

cially in the case of more spatially localized events.558

The rate we estimate from the S2S data set is based on 1996-2015 boundary con-559

ditions (sea surface temperatures, CO2), and our MSM method assumes the climate was560

stationary over this period. Our results indicate that according to the 2017 IFS, 1996-561

2015 conditions were more similar to 1959-2019 than direct counting of SSW events might562

suggest. This could mean that the IFS was missing some key climatological variable dur-563

ing that period (Dimdore-Miles et al., 2021). There is, however, substantial uncertain-564

tuy on the impact of global warming on SSWs, even under 4xCO2 forcing (Ayarzagüena565

et al., 2020). By repeating our analysis on different historical periods, or simulations ini-566

tialized from climate model integrations under different forcing, one could discern a more567

decisive signal of forced changes than would be available from raw data. Moreover, the568

expression for the SSW rate (13) as a “dot product” between a committor and a clima-569

tological probability density would allow us to decompose small changes in SSW frequency570

as changes in these two components separately. A changing probability density π would571

reflect changes in the slow background conditions, whereas a changing committor q+ would572

reflect a change in the system dynamics.573

Error source (iii) is the most open to scrutiny and improvement. We have used the574

short S2S hindcasts directly to validate our parameter choices for the MSM (see the sup-575

plement). In a sequence of preceding papers (Finkel et al., 2021, 2022), we have bench-576

marked the performance of the method on a highly idealized SSW model due to Holton577

and Mass (1976). Nevertheless, large-scale atmospheric models are a mostly-unexplored578

frontier for this class of methods.579

Our method exceeds what is possible directly from reanalysis, but we are not yet580

fully liberated from observations: every S2S trajectory is initialized near reanalysis, and581

it only has 46 days to explore state space before terminating. This fundamentally lim-582

its how far we can explore the tail of the SSW distribution. In other words, the real cli-583
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mate system sets the sampling distribution which is a flexible but important component584

in rare event estimation problems (Thiede et al., 2019; Strahan et al., 2021; Finkel et al.,585

2021). With an executable model, we could initialize secondary and tertiary generations586

of short trajectories to push into more negative-U territory and maintain statistical power587

for increasingly extreme SSW events. This is the essence of many rare-event sampling588

algorithms, such as those reviewed in Bouchet et al. (2019) and Sapsis (2021). For ex-589

ample, a splitting large-deviation algorithm was used in Ragone et al. (2018) to sample590

extreme European heat waves and estimate their return times. Quantile diffusion Monte591

Carlo was used in Webber et al. (2019) to simulate intense hurricanes, and in (Abbot592

et al., 2021) to estimate the probability of extreme orbital variations of Mercury. A nat-593

ural extension of these various techniques would combine elements of active rare event594

sampling with committor estimation via MSMs. Early developments of such a coupling595

procedure are presented in Lucente et al. (2022).596

6 Conclusion597

Extreme weather events present a fundamental challenge to Earth system model-598

ing. Very long simulations are needed to generate sufficiently many extreme events to599

reduce statistical error, but high-fidelity models are needed to simulate those events ac-600

curately. Conventionally, no single model can provide both, due to computational costs.601

Here, we have demonstrated an alternative approach that leverages ensembles of short,602

high-fidelity weather model forecasts to calculate extreme weather statistics, with spe-603

cific application to sudden stratospheric warming (SSW). By exploiting the huge database604

of forecasts stored in the subseasonal-to-seasonal (S2S) database (Vitart et al., 2017),605

we have obtained estimates of the rate and seasonal distribution of extreme SSW events.606

From just 20 years of data, we obtain probability estimates of events with a 500 year re-607

turn time, which are so extreme that the vortex is as strong in the easterly direction as608

its typical westerly climatology. These events have never been observed historically, but609

can be pieced together using our analysis method.610

Our method uses data to estimate the dynamics on a subspace relevant for SSW,611

namely the polar vortex strength as measured by zonal-mean zonal wind. This single ob-612

servable, augmented by time-delay embedding, gives a simple set of coordinates sufficient613

to estimate rate and seasonal distributions. Our demonstration opens the door to ad-614

dress many other data-limited questions of basic physical interest. For instance, a high-615
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resolution model could be used in ensemble forecast mode, but initialized around a decade616

at the end of this century provided by a climate model, to understand the impact of global617

warming on extremes.618

7 Open Research619

Our analysis is based on publicly available datasets from the European Center for620

Medium-Range Weather Forecasts (ECMWF, 2022b) and from associated Copernicus621
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.org/10.5281/zenodo.7675972 contains Python scripts to download the necessary data,623
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