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Abstract18

We present a novel, single-column gravity wave parameterization (GWP) that uses ma-19

chine learning to emulate a physics-based GWP. An artificial neural network (ANN) is20

trained with output from an idealized atmospheric model and tested in an offline envi-21

ronment, illustrating that an ANN can learn the salient features of gravity wave momen-22

tum transport directly from resolved flow variables. We demonstrate that when trained23

on the westward phase of the Quasi-Biennial Oscillation, the ANN can skillfully gener-24

ate the momentum fluxes associated with the eastward phase. We also show that the merid-25

ional and zonal wind components are the only flow variables necessary to predict hor-26

izontal momentum fluxes with a globally and temporally averaged R2 value over 0.8. State-27

of-the-art GWPs are severely limited by computational constraints and a scarcity of ob-28

servations for validation. This work constitutes a significant step towards obtaining ob-29

servationally validated, computationally efficient GWPs in global climate models.30

Plain Language Summary31

Atmospheric gravity waves (GWs) or “buoyancy waves” are generated by pertur-32

bations in a stably-stratified environment. They mediate momentum transport between33

the lower and middle atmospheres and play a leading-order role in driving middle atmo-34

spheric circulation. Due to computational constraints and a lack of observations, global35

climate models “parameterize” or crudely estimate the effect of GWs on the large-scale36

flow. Current climate predictions are sensitive to uncertainties in these representations,37

particularly at the regional scale. Here, we present a novel approach to parameterizing38

GWs by training a neural network to emulate an existing gravity wave parameterization39

in a global climate model. This approach represents an appealing technique to build data-40

driven gravity wave schemes that can reduce existing uncertainties.41

1 Introduction42

Atmospheric gravity waves (GWs) play a leading-order role in driving middle at-43

mospheric circulation, structure, and variability (Fritts & Alexander, 2003). By trans-44

porting momentum, GWs impact the mean climatology (Bretherton, 1969; Sato & Hi-45

rano, 2019). They are also critical for variability, impacting the jet stream and storm tracks46

(Fritts & Nastrom, 1992), stratospheric dynamics (Antonita et al., 2007; Kang et al., 2018;47

Limpasuvan et al., 2012), and processes such as stratospheric cloud formation (Hoffmann48

et al., 2017; S. Alexander et al., 2013). Since much of the wave spectrum (101 to 105 kilo-49

meters) is too fine to be captured at current model resolutions, models typically mimic50

its effects on the resolved circulation via explicit gravity wave parameterizations (GWPs)51

(Fritts & Alexander, 2003; Richter et al., 2010).52
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However, realistic representation of these effects in numerical models remains chal-53

lenging for several reasons: i) The absolute magnitude of GW momentum flux is not par-54

ticularly well-constrained by observational or intermodel studies (Geller et al., 2013). ii)55

GWs are generated by a variety of sources, including orography, convection, and fron-56

togenesis (Fritts & Alexander, 2003), but the representation of their sources is not uni-57

form among models. iii) For a given source, the details of the GWP can vary greatly be-58

tween models (Butchart et al., 2018), and even small changes within the same model can59

lead to diverging regional climate projections (Schirber, 2015). iv) The horizontal prop-60

agation of GWs is usually neglected in parameterizations, which is nonphysical and has61

an impact on the middle atmosphere (Xu et al., 2017). v) There tends to be a compen-62

sation between resolved and unresolved waves (Cohen et al., 2013), complicating obser-63

vational and intermodel comparisons.64

Despite these limitations, GWPs can be optimized towards maximizing global fore-65

cast skill scores (Alexander et al., 2019) or “tuned” to reduce climatological biases (Garcia66

et al., 2017). However, these limitations become apparent in simulations of future cli-67

mate. Projections of the tropospheric and stratospheric circulations’ response to anthro-68

pogenic forcing are sensitive to uncertainties in GWPs (Sigmond & Scinocca, 2010; Polichtchouk69

et al., 2018). Such limitations indicate the need for the continued development of GWPs,70

preferably with observational validation, computational efficiency, and minimal bias stem-71

ming from underlying physical assumptions.72

An alternative approach to physics-based parameterization has emerged in the form73

of machine learning. For atmospheric sciences, machine learning has been employed to74

parameterize processes such as convection (Rasp et al., 2018; Gentine et al., 2018) and75

radiation (Brenowitz & Bretherton, 2018; Roh & Song, 2020), among other examples.76

These applications are particularly valuable when algorithms derived from first princi-77

ples (e.g., advection on the sphere) cannot be defined with great success. GWPs are thus78

ripe for investigation with machine learning techniques, and relatively little work has been79

done in this area. Matsuoka et al. (2020) made the important demonstration that a con-80

volutional neural network can estimate the GW structure over Hokkaido, Japan when81

trained on high-resolution reanalysis data.82

Here, we perform a novel investigation into the efficacy of machine learning as a83

GWP. We demonstrate that the drag due to breaking GWs can be faithfully represented84

using an artificial neural network (ANN) that is trained using data from a global atmo-85

spheric model embedded with an existing GWP. The machine learning model, which we86

call WaveNet, differs from the Matsuoka et al. (2020) approach in that it is trained us-87

ing output from an existing GWP, generates GW momentum tendencies rather than wind88

anomalies, and provides global coverage. The value of a data-driven GWP lies in its com-89

putational efficiency after training and its ability to be trained and evaluated using an90

arbitrary amount of input data, which may include observations, reanalysis, and targeted91
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integrations (e.g., at ultra-high resolutions). The results presented here are a natural first92

step towards developing a computationally efficient, three-dimensional, observationally93

validated GWP.94

2 Data95

We train the ANN to emulate the M. Alexander and Dunkerton (1999) GWP as96

incorporated into an atmospheric model of intermediate complexity, the Model of an Ide-97

alized Moist Atmosphere (MiMA; Jucker and Gerber (2017)). This choice of GWP and98

model were based on two factors. First, it is desirable to use a model and GWP that pro-99

duce somewhat realistic GW behavior. MiMA captures key dynamical features of the100

stratosphere-troposphere system that depend critically on GWs at a resolution compa-101

rable to state-of-the-art stratosphere resolving global climate models (GCMs). It also102

produces a realistic representation of stratospheric variability (i.e., the frequency and in-103

tensity of sudden stratospheric warmings and a self-generated Quasi-Biennial Oscilla-104

tion (QBO)). Second, it is advantageous to limit additional degrees of freedom that could105

cause underfitting in the ANN. MiMA’s key simplification relative to a comprehensive106

atmospheric model lies in its idealized treatment of the hydrological cycle, its lower bound-107

ary (a purely thermodynamic, or slab ocean), and the absence of cloud and aerosol pro-108

cesses.109

MiMA is integrated with T42 spectral resolution (triangular truncation at wavenum-110

ber 42, roughly equivalent to a 2.8-degree grid) in the horizontal and 40 vertical levels,111

with a model lid at 0.18 hPa and 23 levels above 100 hPa. Following Garfinkel et al. (2020),112

its simple thermodynamic ocean includes a crude parameterization of oceanic heat trans-113

port specified by steady heat flux within the oceanic layer, often referred to as a “Q-flux”.114

The implementation of the M. Alexander and Dunkerton (1999) GWP, hereafter115

referred to as the AD99 scheme, is based on its formulation within the GFDL Flexible116

Modeling System. It is the same scheme employed by GFDL Atmospheric Model 3 (Donner117

et al., 2011), except modified by Cohen et al. (2013) to ensure that no momentum flux118

escapes the model lid. Here, all momentum that reaches 0.85 hPa is uniformly distributed119

to levels layers above the stratopause. The scheme assumes a Gaussian spectrum of GWs,120

discretized as a function of phase speed and launched from the upper troposphere (315121

hPa). A broad spectrum of phase speeds is chosen, with a half width of 35 m/s, and cen-122

tered around the speed of the zonal wind at the launch level. The total amplitude of the123

momentum stress is 0.0043 Pa. The width and momentum stress were optimized to sim-124

ulate the QBO, but still provide a reasonable representation of waves in the extratrop-125

ics. The broad spectrum ensures that there is a rich source of GWs at MiMA’s lower bound-126

ary, and the amplitude and variability of the extratropical polar vortices are well cap-127

tured in the simulation. The momentum associated with each wave is deposited at its128

linear breaking level. The intermittency (i.e., highly skewed distribution) of observed GWs129
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is taken into account via a scaling parameter: the breaking level is based on the behav-130

ior of a large wave, indicative of the median amplitude of the distribution, but the mo-131

mentum flux is rescaled to provide the momentum deposition associated with an aver-132

age wave. This better captures the true breaking level of GWs, but smooths out the mo-133

mentum deposition in time.134

The chief idealization of the scheme is in our choice of source spectrum. We assume135

a uniform spectrum that varies only with respect to the zonal winds at the source level.136

This crudely accounts for filtering of the wave spectrum by the troposphere and was crit-137

ical for the simulation of the QBO. Such fixed source schemes are widely employed in138

atmospheric models (Butchart et al., 2018), but are highly simplified relative to real GW139

sources.140

We utilized five years of one integration of MiMA, yielding around 12 million train-141

ing samples per year, with one year of six-hourly data representing approximately 20 Gb.142

The second year of output is used for training, while all others are reserved for testing.143

Not all runs utilize the full year of training data, and discrepancies are specified per ex-144

periment. All training data are standardized by removing the mean and scaling to unit145

variance, calculated for each variable across each pressure level. Test data was similarly146

standardized using the mean and variance calculated for training data. Output variables147

were inverse transformed before presentation.148

3 Neural Network Architecture149

An ANN is a computing system of interconnected layers of computational nodes.150

Each node is comprised of a linear component, which adds a bias parameter to the in-151

ner product of a feature vector and a learnable weight vector. A nonlinear component152

then maps the linear output to an activation function. The resulting scalar from each153

node in a layer is passed as input to each node in the subsequent layer. With incremen-154

tal weight and bias adjustments, an ANN attempts to approximate nonlinear relation-155

ships between input and output features. The first layer, or input layer, of WaveNet ac-156

cepts a stacked vector representing a single vertical column of resolved flow variable out-157

put from MiMA. The last layer, or output layer, produces a stacked vector of gravity wave158

drag (GWD) generated by the ANN for a single vertical column (Table S1). The lay-159

ers between the first and last layers are called hidden layers. We trained two ANNs, one160

to generate zonal drag and another to generate meridional drag. Both ANNs contain four161

hidden layers, each with 256 nodes. The fourth hidden layer splits into 33 branches, one162

for each nontrivial vertical level (the first seven layers are below the source level). We163

allow the network to use resolved flow variables from below the source level since this164

may relate to the drag above. Each branch contains four pressure-level specific hidden165

layers containing 256, 128, 64, and 32 nodes. The final pressure-level specific layer feeds166

into an output layer. The result of each node in the output layer does not pass through167
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an activation function and produces a GWD value for the vertical column (Figure S1).168

For all other nodes, we use the Rectified Linear Unit (ReLU). In total, this ANN archi-169

tecture contains 3,848,481 trainable parameters when using the full set of resolved flow170

variables and shifts slightly, with a lower limit of 3,806,753, when training with a sub-171

set of resolved flow variables. We did not perform an analysis of performance sensitiv-172

ity to the number of learnable parameters. Rather, we followed standard literature sug-173

gesting that with an abundance of data available, deeper neural networks generally pro-174

duce better scores than shallow networks (Liang & Srikant, 2016).175

During training, the ANN attempts to minimize the loss by incrementally nudg-176

ing each trainable parameter by a scaled version of the gradient of the loss with respect177

to that parameter. The loss function - in our case, the logcosh error - is computed for178

a minibatch of 1,024 training samples that are drawn from a pseudo-shuffled training dataset.179

The logcosh error is defined as180

L(y, yp) =

n∑
i=1

log(cosh(ypi − yi))

where n is the size of the dataset and yi and ypi are the ith truth and prediction, respec-181

tively. Parameter updates are performed according to Adam optimization (Kingma &182

Ba, 2014). We started each training session with a learning rate of 10−3 and reduced it183

when improvement plateaued for more than 5 epochs, with an epoch defined as a sin-184

gle pass through the training data. We stopped training when performance plateaued185

for more than 10 epochs, which occurred at 200 epochs on average. We did not perform186

any regularization. All weights are initialized using Xavier initialization (Glorot & Ben-187

gio, 2010); however, initialization between runs proved to have no impact on the final188

results between training events.189

4 Results190

4.1 Evaluation of ANN Predictions191

We start by training WaveNet on one year of MiMA output and testing it on the192

three years proceeding and one year preceding the training period. All subsequent anal-193

yses are completed using our best performing networks and the full vertical column of194

resolved flow variables, unless otherwise noted. Figure 1 shows strong similarities on a195

global scale between the zonal and meridional GWD generated by WaveNet and AD99196

at 10 hPa (panels a through f) and 100 hPa (panels g through l) for a single time step.197

Similar similarities are seen at all vertical layers and across time (Movie S1 and S2). All198

reported tests are conducted “offline”, such that WaveNet is not directly coupled to MiMA199

(i.e. WaveNet’s output is not used by MiMA to generate data at subsequent time steps).200

201
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Figure 1. Latitude-longitude snapshot of zonal and meridional AD99 generated drag (panels

a, d, g, and j), the corresponding ANN predictions in an offline test (panels c, f, i, and l), and

their difference (panels b, e, h, and k) at model level 13 (10 hPa) and 23 (100 hPa) for one time

step in the test set.
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Figure 2. Panels a) through d) show ANN zonal predictions versus AD99 truth at 10 hPa, 50

hPa, 100 hPa and 200 hPa, respectively, for 10k samples in the test set. Panel e) shows pressure

versus horizontal and time averaged R2 values generated from one year of test data for zonal

predictions.

To evaluate the quality of predictions, we calculate the R2 coefficient of determi-202

nation averaged over time and horizontal dimensions for each vertical level (Figure 2).203

R2 is defined as one minus the proportion of the sum of squares of residuals to the to-204

tal sum of squares (this is also equal to the square of the correlation coefficient):205

R2 = 1 −
∑

i(yi − fi)
2∑

i(yi − ȳ)2

where yi and fi are the AD99 and WaveNet generated drag for the ith sample, respec-206

tively, and ȳ is the globally and temporally averaged AD99 generated drag. Figure 2 shows207

that the ANN can skillfully generate GWD similar to that generated by AD99. WaveNet208

produces R2 values for its zonal and meridional predictions averaged across space and209

time of .92 and .85, respectively. For all metrics and across experiments, WaveNet per-210

forms better on zonal tendencies than meridional tendencies (Figure S2). The variance211

of meridional GWD generated by AD99 is smaller in absolute magnitude than the vari-212

ance of zonal GWD but greater relative to its mean at all pressure levels. As a result,213

meridional drag is likely more difficult to learn.214

In order to assess how well WaveNet captures GWD associated with large-scale cir-215

culation, we analyze the vertical profile of equatorial drag tendencies (Figure 3). WaveNet216

is trained on one year of global data (months 12-24), containing the westward phase of217

the QBO. The ANN captures the changes in GW driving associated with the eastward218

phases preceding and proceeding the training period. While this is an offline test, this219
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Figure 3. Pressure-Time profile of zonal mean drag 15-day tendencies at 0◦ latitude for zonal

AD99 generated GW drag (a), the corresponding ANN predictions (c), and their difference (b).

Vertical dashed lines separate years. The ANN is trained on months 12-24 and tested on all other

months. The westward (brown) and eastward (green) bands correspond to drag associated with

breaking GWs in opposite phases of the QBO.

result suggests that WaveNet can generalize outside of its training sample. That is, it220

can transfer learning from other regions (horizontally or vertically) containing eastward221

wind samples to a region where it has not experienced similar samples during the train-222

ing period. While comparison between the top and bottom panels of Figure 3 shows that223

WaveNet can capture the gross features of the “out-of-sample” periods, differences be-224

tween AD99 and WaveNet are larger at these times, as seen in the middle panel. No-225

tably, the errors decrease around month 48, when the winds are more similar in struc-226

ture to the training period. This suggests more varied training data may improve WaveNet’s227

performance. Nonetheless, this result is reassuring with respect to WaveNet’s potential228

to globally generalize from regional observations or datasets generated from high-resolution229

simulations, a subject of future studies. Furthermore, it suggests that the ANN does not230

trivially depend on the source function’s artificial behavior. A similar analysis performed231

at 60N reveals that WaveNet captures the seasonal cycle of GWD associated with the232

polar vortex, further supporting the claim that WaveNet can capture large-scale circu-233

lation patterns (Figure S3).234

4.2 Interpretability of ANN235

Although ANNs have achieved great success in a range of applications, their lack236

of interpretability has become a significant obstacle to their widespread acceptance and237

made them generally unsuitable for conceptual model building. Here, WaveNet is trained238

using ten distinct subsets of the full resolved flow variable set (Figure 4ab) to determine239
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which features are most critical. Figure 4a and 4b show horizontally and temporally av-240

eraged R2 values by height per feature set for zonal and meridional drag predictions. We241

conclude that the zonal and meridional wind components are the only flow variables nec-242

essary to predict horizontal drag with a globally and temporally averaged R2 value over243

0.8. Additional training features mildly improve performance, with varied effects at dif-244

ferent pressure levels. Note that with the exclusion of latitude and longitude features,245

the general performance of WaveNet does not significantly drop. These results are in agree-246

ment with those in subsection 4.1, in that the ANN is learning to emulate GW dissipa-247

tion rather than climatological GWD properties or a function of latitude. For these ex-248

periments, the total number of trainable parameters varies by roughly 1.0%, with fewer249

input features corresponding to fewer parameters. This variance did not impact the rel-250

ative performance of each experiment.251

As a preliminary analysis of the role of horizontal wind components in predictions,252

we calculate Shapley Additive Explanations (SHAP; Lundberg and Lee (2017)). SHAP253

values represent the effect a feature has on the model’s prediction if that feature is in-254

cluded in the input. To compute SHAP values, the model is retrained on all feature sub-255

sets S ⊆ F, where F is the set of all features. The SHAP value for a feature is then the256

weighted sum of the conditional expectation of the marginal contribution of including257

that feature in the prediction. The SHAP values for this study are calculated using Deep258

SHAP, an approximation technique that combines DeepLIFT with Shapley values from259

collinear cooperative game theory (Shrikumar et al., 2017; Lundberg & Lee, 2017). This260

approximation technique avoids retraining the network N times, where N is the power261

set of F. Unsurprisingly, the results show that on average the horizontal wind compo-262

nents on levels directly above and below the level of prediction have the largest contri-263

bution to the model’s prediction (Figure S4). This is consistent with our physical un-264

derstanding of GWs, where dissipation is linked to critical levels (i.e., where the phase265

speed of a wave is equal to the speed of the background flow). This spatially local de-266

pendence suggests that our approach may generalize well to observational datasets that267

contain measurements at a small range of pressure levels, e.g., observations from super-268

pressure balloons (Podglajen et al., 2016; Lindgren et al., 2020).269

4.3 Sensitivity to Amount of Training Data270

To understand how performance degrades as less training data is made available271

to the ANN, we incrementally decrease the number of training samples from one year272

to one day (Figure 4cd). To account for the effects of seasonality, for each test, we sam-273

ple uniformly in space and time from one year of training data to generate a subset with274

coverage of the entire seasonal cycle. While more data generally leads to better perfor-275

mance, we find that one fourth of one year of data (equivalent to three months or roughly276

2.9 million training samples) is sufficient to learn most of the salient features of AD99.277
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Figure 4. Panels a) through d) show horizontally and temporally averaged R2 values com-

puted for each model pressure level for either each feature experiment (a and b) or for each data

availability experiment (c and d).
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This suggests the promise of a data-driven GWP to be trained and validated on obser-278

vational datasets of similar resolution and size, as well as to generalize to simulations that279

more realistically model the physics of GW generation, propagation, and dissipation. Ad-280

ditionally, given the deep architecture of WaveNet, that no effort was made to improve281

performance at each duration, and that it is known that deep networks require large train-282

ing sets, three months can be regarded as a threshold beyond which optimal performance283

is likely for an ANN similar to WaveNet.284

5 Discussion and Conclusion285

We have demonstrated that an ANN can skillfully learn the salient features of GW286

momentum transport directly from resolved flow variables. The concept was demonstrated287

in an idealized setting using the M. Alexander and Dunkerton (1999) GWP in a simpli-288

fied atmospheric model, MiMA. We have shown that the most important input features289

for WaveNet’s predictions are the horizontal wind components local to the vertical level290

of prediction. Moreover, WaveNet is skillfully able to reproduce drag associated with the291

eastward phase of the QBO after being trained on data representing the westward phase.292

In doing so, we have demonstrated that WaveNet can spatially and temporally gener-293

alize. The success seen in this context implies that an approach like WaveNet may open294

a new avenue by which the advantages of high-resolution GW simulations (Remmler et295

al., 2015) or observational datasets (Lindgren et al., 2020) can be incorporated into cur-296

rent GCMs.297

There are, however, a number of challenges that may emerge before the advantages298

of an approach like WaveNet can be fully realized in a GCM. First, many studies (e.g.,299

Brenowitz and Bretherton (2018)) have shown that machine learning schemes which per-300

form very well offline, i.e., reproducing the correct tendencies, given the correct model301

state, do not work as well (or at all) when the scheme is coupled with a GCM in an “on-302

line” integration. Second, ANNs do not inherently conserve energy or momentum, and303

additional assumptions may be made to conserve these quantities: for example, artifi-304

cially scaling the positive and negative fluxes, or depositing the remaining momentum305

at pre-determined levels. Third, the lack of interpretability of ANNs may serve as a sub-306

stantial barrier to their widespread adoption. Additional effort is necessary to consider307

how WaveNet’s behavior may relate to the GW dispersion relations. Fourth, WaveNet308

is an extremely large network. In order to make coupling WaveNet with a GCM com-309

putationally feasible, a cost-performance analysis should be performed to reduce WaveNet’s310

complexity. Finally, a next test is to examine how WaveNet generalizes when trained on311

regional datasets and orographic and nonorographic GWPs.312

Nevertheless, our results suggest that machine learning may represent a powerful313

alternative to existing GWPs. An approach like WaveNet is naturally suited for data as-314

similation, and WaveNet may be completely or partially trained and validated using ob-315
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servational datasets. Moreover, existing GWPs ignore horizontal GW propagation due316

to computational limitations. A machine learning approach such as WaveNet may af-317

ford the computational efficiency needed to develop a three-dimensional GWP. Projec-318

tions of the large-scale climate response to anthropogenic warming are sensitive to un-319

certainties in existing GWPs. Developing an observationally validated, three-dimensional320

GWP may more accurately capture the physics of GWs. The approach presented here321

constitutes a first step toward obtaining such GWPs for global climate prediction.322
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Introduction The supporting information includes one table, four figures and two movies.

Table S1 shows a list of input variables accepted by the ANN and output variables gener-

ated by the ANN. Figure S1 shows a schematic of the ANN architecture. Figure S2 shows

ANN meridional predictions versus AD99 truth at four model levels and a globally and

temporally averaged R2-Pressure plot for one year of test data. Figure S3 is a pressure-

time profile of zonal mean drag 15-day tendencies at 60N for zonal ANN predictions, the

corresponding AD99 truths, and their difference. Figure S4 shows SHAP bar plots of

the ten most important meridional and zonal wind features used by WaveNet to generate

GWD at 10 hPa and 100 hPa. Movies S1 and S2 are a time series animation of Figure 2

at 10 hPa, for zonal and meridional predictions, respectively.

Movie S1. A latitude-longitude time series of zonal ANN predictions, AD99 truth, and

their difference at model level 13 (10 hPa) for half a year of test data. Panels a through

c in Figure 1 are a single snapshot of this animation.

Movie S2. A latitude-longitude time series of meridional ANN predictions, AD99 truth,

and their difference at model level 13 (10 hPa) for half a year of test data. Panels d

through f in Figure 1 are a single snapshot of this animation.
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Table S1. List of input variables accepted by the ANN and output variables generated by the

ANN. The total input feature vector contains 203 elements, and the output is 33 GWD values.

Two networks are trained, one for zonal drag and one for meridional drag.

List of Input and Output Variables Used for ANN
Input Variables Vertical Levels Output Variables Vertical Levels
Zonal Wind (m

s
) 40 GW zonal drag (m

s2
) 33

Meridional Wind (m
s

) 40 GW meridional drag
(m
s2

)
33

Vertical Wind (m
s

) 40
Temperature (K) 40
Height (m) 40
Latitude (λ) 1
Longitude (φ) 1
Surface Pressure (hPa) 1
Size of Stacked Array 203 33

Figure S1. WaveNet contains 4 shared hidden layers, each with 256 neurons. WaveNet then

splits into 33 branches (one branch per nontrivial vertical layer) each containing 4 pressure level

specific layers with 256, 128, 64, and 32 neurons, respectively. Each branch then outputs a single

value corresponding to the gravity wave drag at that vertical layer.
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Figure S2. As in Figure 2, but for meridional GWD, panels a) through d) show ANN

meridional GWD versus AD99 truth at 10 hPa, 50 hPa, 100 hPa and 200 hPa, respectively, for

10k samples in the test set. Panel e) shows pressure versus horizontally and temporally averaged

R2 values generated from one year of test data for zonal predictions.
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Figure S3. Pressure-Time profile of zonal mean drag 15-day tendencies at 60N latitude for

zonal AD99 generated GW drag (a), the corresponding ANN predictions (c), and their difference

(b). Vertical dashed lines separate years. The ANN is trained on months 12-24, and tested on all

other months. The westward (brown) and eastward (green) bands correspond to drag associated

with the seasonal cycle of the Polar Vortex.
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Figure S4. Panels a) through d) are SHAP bar plots of the ten most important meridional

(v; panels a and b) and zonal (u; panels c and d) wind features used by WaveNet to generate

meridional or zonal GWD at 10 hPa and 100 hPa. The vertical axes’ values indicate displacements

in vertical pressure levels, with positive and negative values being above and below the level of

prediction, respectively (e.g., u -1 indicates zonal wind at the vertical level directly below the

level of prediction). The results suggest that vertically local wind fields are the dominant features

used by WaveNet to generate GWD.
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