
manuscript submitted to Geophysical Research Letters

A Deep Learning Parameterization of Gravity Wave1

Drag Coupled to an Atmospheric Global Climate2

Model3

Zachary I. Espinosa1, Aditi Sheshadri1, Gerald R. Cain 2, Edwin P. Gerber3,4

Kevin J. DallaSanta4,5
5

1Department of Earth System Science, Stanford University, Stanford, CA, USA6

2Department of Computer Science, Stanford University, Stanford, CA, USA7

3Courant Institute of Mathematical Sciences, New York University, New York, NY, USA8

4NASA Goddard Institute for Space Studies, New York, NY, USA9

5Universities Space Research Association, Columbia, MD, USA10

Key Points:11

• A neural network can accurately and stably emulate a physics-based parameter-12

ization of gravity wave drag when coupled to a climate model.13

• When trained on one phase of the quasi-biennial oscillation, the emulator can gen-14

erate an entire cycle of the quasi-biennial oscillation.15

• The emulator captures the response of the original gravity wave parameterization16

to enhanced CO2.17
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Abstract18

We present a novel, single-column gravity wave parameterization (GWP) that uses ma-19

chine learning to emulate a physics-based GWP. An artificial neural network (ANN) is20

trained with output from an idealized global climate model (GCM). We show that an21

ANN can learn the distribution of gravity wave drag directly from resolved flow variables.22

When coupled with a GCM, the ANN generates a quasi-biennial oscillation (QBO) with23

a realistic amplitude and period and is stable for multidecadal timescales. When forced24

by increasing concentrations of CO2, the ANN’s climatological response is similar to that25

generated by the physics-based GWP. Finally, we show that the local horizontal wind26

components are the only essential training features for reasonable emulation and online27

stability. State-of-the-art GWPs differ in functional form, and are limited in their abil-28

ity to incorporate observations. This work constitutes a significant step towards obtain-29

ing observationally validated, computationally efficient GWPs in GCMs.30

Plain Language Summary31

Atmospheric gravity waves (GWs) or “buoyancy waves” are generated by pertur-32

bations in a stably-stratified environment. They mediate momentum transport between33

the lower and middle atmospheres and play a leading-order role in driving middle atmo-34

spheric circulation. Due to computational constraints and a lack of observations, global35

climate models “parameterize” or estimate the effect of GWs on the large-scale flow. Cur-36

rent climate predictions are sensitive to uncertainties in these representations, partic-37

ularly at the regional scale. Here, we present a novel approach to parameterizing GWs38

by training a neural network to emulate an existing gravity wave parameterization in a39

global climate model. This approach represents an appealing technique to build data-40

driven gravity wave schemes that can reduce existing uncertainties.41

1 Introduction42

Atmospheric gravity waves (GWs) play an important role in surface climate (Palmer43

et al., 1986) and a leading-order role in driving middle atmospheric circulation, struc-44

ture, and variability (Fritts & Alexander, 2003). By transporting momentum, GWs im-45

pact the mean climatology (Bretherton, 1969; Sato & Hirano, 2019). They are critical46

for variability, impacting the jet stream and storm tracks (Fritts & Nastrom, 1992) and47

stratospheric dynamics (Antonita et al., 2007; Kang et al., 2018; Limpasuvan et al., 2012).48

Since much of the gravity wave spectrum (101 to 105 kilometers) is too fine to be cap-49

tured at current model resolutions, models typically mimic its effects on the resolved cir-50

culation via explicit Gravity Wave Parameterizations (GWPs) (Fritts & Alexander, 2003;51

Richter et al., 2010).52
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Incorporating a realistic representation of these effects in numerical models, how-53

ever, remains challenging for several reasons: i) The absolute magnitude of GW momen-54

tum flux is not well-constrained by observational or intermodel studies (Geller et al., 2013).55

ii) GWs are generated by a variety of sources, including orography, convection, and fron-56

togenesis (Fritts & Alexander, 2003), but the representation of their sources is not uni-57

form among models. iii) For a given source, the details of the GWP can vary greatly be-58

tween models (Butchart et al., 2018), and even small changes within the same model can59

lead to diverging regional climate projections (Schirber, 2015). iv) The horizontal prop-60

agation of GWs is usually neglected in parameterizations, which is nonphysical and has61

an impact on the middle atmosphere (Xu et al., 2017). v) There tends to be a compen-62

sation between resolved and unresolved waves (Cohen et al., 2013), complicating obser-63

vational and intermodel comparisons.64

Despite these limitations, GWPs can be optimized towards maximizing global fore-65

cast skill scores (Alexander et al., 2019) or “tuned” to reduce climatological biases (Garcia66

et al., 2017). However, these limitations become apparent in simulations of future cli-67

mate. Projections of the tropospheric and stratospheric circulations’ response to anthro-68

pogenic forcing are sensitive to uncertainties in GWPs (Sigmond & Scinocca, 2010; Polichtchouk69

et al., 2018). Such limitations indicate the need for the continued development of GWPs,70

preferably with observational validation, computational efficiency, and minimal bias stem-71

ming from underlying physics-based assumptions.72

An alternative approach to physics-based parameterization has emerged in the form73

of machine learning (ML). ML has been employed to parameterize processes such as con-74

vection (Rasp et al., 2018; Gentine et al., 2018) and radiation (Brenowitz & Bretherton,75

2018; Roh & Song, 2020). Relatively little work has been done to investigate GWPs with76

ML technqiues. Matsuoka et al. (2020) demonstrated that a convolutional neural net-77

work can estimate the GW structure over Hokkaido, Japan when trained on high-resolution78

reanalysis data and Chantry et al. (2020) used an artificial neural network (ANN) to em-79

ulate a non-orographic GWP in numerical weather forecasting.80

We perform a novel investigation into the efficacy of ML as a GWP in a GCM. We81

demonstrate that the drag due to breaking GWs and resultant circulation can be faith-82

fully generated using an ANN that is trained using data from a global atmospheric model.83

The ML model, which we call WaveNet, differs from previous work in that it is trained84

using output from a GCM, provides global coverage, is stable for decadal integrations85

when coupled to the GCM, and accurately reproduces the large-scale atmospheric cir-86

culation. The potential value of a data-driven GWP lies in its computational efficiency87

after training, its ability to be trained and evaluated using an arbitrary amount of in-88

put data, which may include observations, reanalysis, and targeted integrations, and its89

potential to be appropriated into models containing GWPs thought to be less accurate.90
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2 Data91

We train the ANN to emulate the M. Alexander and Dunkerton (1999) GWP as92

incorporated into an atmospheric model of intermediate complexity, the Model of an Ide-93

alized Moist Atmosphere (MiMA) (Jucker & Gerber, 2017; DallaSanta et al., 2019). MiMA94

captures key dynamical features of the stratosphere-troposphere system that depend crit-95

ically on GWs at a resolution comparable to state-of-the-art stratosphere resolving GCMs.96

For additional details refer to Jucker and Gerber (2017) and DallaSanta et al. (2019).97

MiMA is integrated with T42 spectral resolution (triangular truncation at wavenumber98

42, roughly equivalent to a 2.8-degree grid) in the horizontal and 40 vertical levels, with99

a model lid at 0.18 hPa and 23 levels above 100 hPa.100

The implementation of the M. Alexander and Dunkerton (1999) GWP, hereafter101

referred to as the AD99 scheme, is based on its formulation within the GFDL Flexible102

Modeling System. The AD99 scheme aims to capture the effect of non-orographic grav-103

ity wave drag. It is the same scheme employed by GFDL Atmospheric Model 3 (Donner104

et al., 2011), except modified by Cohen et al. (2013) to ensure that all momentum that105

reaches 0.85 hPa is uniformly distributed to layers above the stratopause. The scheme106

assumes a Gaussian spectrum of GWs, discretized as a function of phase speed and launched107

from the upper troposphere (315 hPa).108

A broad spectrum of phase speeds is chosen, with a half width of 35 m/s, and cen-109

tered around the speed of the zonal wind at the launch level. The total amplitude of the110

momentum stress is 0.0043 Pa. The broad spectrum ensures that there is a rich source111

of GWs at MiMA’s lower boundary. The momentum associated with each wave is de-112

posited at its linear breaking level. The intermittency of observed GWs is taken into ac-113

count via a scaling parameter: the breaking level is based on the behavior of a large wave,114

indicative of the median amplitude of the distribution, but the momentum flux is rescaled115

to provide the momentum deposition associated with an average wave. This better cap-116

tures the true breaking level of GWs, but smooths out the momentum deposition in time.117

The chief idealization of the scheme is in our choice of source spectrum. We assume118

a uniform spectrum that varies only with respect to the zonal winds at the source level.119

This crudely accounts for filtering of the wave spectrum by the troposphere and was crit-120

ical for the simulation of the QBO.121

We utilized five years of six-hourly output from one integration of MiMA, yield-122

ing 11,796,480 training samples per year. The second year of output is used for train-123

ing, while all others are reserved for testing. Not all runs utilize the full year of train-124

ing data, and discrepancies are specified per experiment. All training data are standard-125

ized by removing the mean and scaling to unit variance, calculated for each variable across126

each pressure level. Test data was similarly standardized using the mean and variance127
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calculated from training data. Output variables were inverse transformed before presen-128

tation.129

3 Neural Network Architecture130

An artificial neural network (ANN) is a computing system of interconnected lay-131

ers of computational nodes. For a detailed review of ANNs, we recommend Brenowitz132

and Bretherton (2018). We trained two ANNs to generate zonal and meridional drag sep-133

arately. The ANN architecture is described in Figure S1.134

The input layer of both ANNs accepts a single vertical column of resolved flow vari-135

ables from MiMA (Table S1). The output layer produces a single vertical column of 33136

gravity wave drag (GWD) values, corresponding to the upper 33 model levels (approx-137

imately 0.18hPa to 436hPa). This includes the upper three sponge layers and three lay-138

ers below AD99’s average launch level. During online simulations with the ANN, no drag139

is specified below level 33, i.e. zeros are appended to WaveNet’s output to extend to the140

full length of the vertical column. The result of each node in the output layer does not141

pass through an activation function. For all other nodes, we use the Rectified Linear Unit142

(ReLU). In total, this ANN architecture contains 3,848,481 trainable parameters when143

using the full set of resolved flow variables and shifts slightly, with a lower limit of 3,806,753,144

when training with a subset of resolved flow variables.145

The loss function - in our case, the logcosh error - is computed for a minibatch of146

1,024 training samples that are drawn from a pseudo-shuffled training dataset. The log-147

cosh error is defined as148

L(y, yp) =

n∑
i=1

log(cosh(ypi − yi))

where n is the size of the dataset and yi and ypi are the ith truth and prediction, respec-149

tively. The logcosh error is found to consistently outperform mean-squared and mean-150

absolute loss functions. Parameter updates are performed according to Adam optimiza-151

tion (Kingma & Ba, 2014). We started each training session with a learning rate of 10−3
152

and reduced it when improvement plateaued for more than 5 epochs, with an epoch de-153

fined as 1,500 batches. We stopped training when performance plateaued for more than154

10 epochs, which occurred at 200 epochs on average. We did not perform any regular-155

ization. All weights are initialized using Xavier initialization (Glorot & Bengio, 2010).156

4 Offline Performance157

4.1 Large-Scale Circulation158

We start by training WaveNet on one year of MiMA output and testing it offline159

on the three years proceeding and one year preceding the training period. In order to160

assess how well WaveNet captures GWD associated with large-scale circulation, we an-161
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Figure 1. Pressure-Time profiles of 15-day averaged zonal drag at 5◦S - 5◦N and 60◦N for

AD99 (a,d), WaveNet (c,f), and their difference (b,e) during offline, uncoupled testing. Vertical

dashed lines separate years. The ANN is trained on the second year and tested on all other years.

The westward (blue) and eastward (red) bands in the left column correspond to drag associated

with the QBO and in the right column correspond to drag associated with the seasonal cycle of

the polar vortex.

alyze the vertical profile of drag tendencies at 5◦S - 5◦N and 60N (Figure 1). WaveNet162

is trained on one year of global data (year 2), containing the westward phase of the QBO163

and a full seasonal cycle of the polar vortex. The ANN captures the changes in GW driv-164

ing associated with the eastward phases preceding and proceeding the training period.165

The result suggests that WaveNet can transfer learning from regions (horizontally or ver-166

tically) containing eastward wind samples to a region where it has not experienced sim-167

ilar samples during the training period.168

While comparison between Figure 1a and Figure 1c shows that WaveNet can cap-169

ture the gross features of the “out-of-sample” periods, differences between AD99 and WaveNet170

are larger at these times, as seen in the middle panel. Notably, the errors decrease around171

month 48, when the winds are more similar in structure to the training period. This sug-172

gests more varied training data or regularization techniques may improve WaveNet’s per-173

formance. Movies S1-S4 show strong similarities on a global scale between the horizon-174

tal GWD generated by WaveNet and AD99 at 10 hPa and 100 hPa for a six month time175

series of test data. These results are reassuring with respect to WaveNet’s potential to176

globally generalize from regional observations.177

4.2 Interpretability of the ANN178

To further evaluate the quality of predictions, we calculate the R2 coefficient of de-179

termination for a one year time series of test data at each spatial location and average180

for each vertical level. R2 is defined as one minus the proportion of the sum of squares181
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Figure 2. R2 values are computed for one year of test data at each spatial location and av-

eraged for each model pressure level. Presented are the R2 values for the feature experiments (a

and b), where ten subsets of the full input variable set are provided during training, and data

availability experiments (c and d), where the size of the training set is restricted to the number of

days specified in the legend.

of residuals to the total sum of squares. We also train WaveNet using ten distinct sub-182

sets of the full resolved flow variable set to determine which training features are most183

critical (Figure 2ab). When trained with the full feature set (light blue, circle inscribed184

lines), the average pressure weighted R2 value above the source level is .91 for zonal and185

.88 for meridional GWD predictions. Below this level, performance significantly degrades186

as AD99 overwhelmingly outputs trivial, nonphysical GWD. The zonal (meridional) wind187

component is the only flow variable necessary to retain 94.4% (96.1%) of the ANN’s per-188

formance for zonal (meridional) GWD predictions.189

To further investigate the role of horizontal wind features, we calculate Shapley Ad-190

ditive Explanations (SHAP) (Lundberg & Lee, 2017a). The SHAP value for a feature191

is the weighted sum of the conditional expectation of the marginal contribution of in-192

cluding that feature in the prediction. The SHAP values for this study are calculated193

using Deep SHAP, an approximation technique that combines DeepLIFT with Shapley194

values from collinear cooperative game theory (Shrikumar et al., 2017; Lundberg & Lee,195

2017b). Figure S2 shows that on average the horizontal wind components on levels di-196

rectly above and below the level of prediction have the largest contribution to the model’s197
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prediction. This is consistent with our physical understanding of GWs, where dissipa-198

tion is linked to critical levels (i.e., where the phase speed of a wave is equal to the speed199

of the background flow). This spatially local dependence suggests that our approach may200

generalize well to observational datasets that contain measurements at a small range of201

pressure levels, e.g., observations from superpressure balloons (Podglajen et al., 2016;202

Lindgren et al., 2020).203

4.3 Sensitivity to Amount of Training Data204

To understand how performance degrades as less training data is made available205

to the ANN, we incrementally decrease the number of training samples from one year206

to one day (Figure 2cd). To account for the effects of seasonality, we sample uniformly207

in space and time from one year of training data to generate a subset with coverage of208

the entire seasonal cycle. We find that a quarter of a year of data (equivalent to three209

months or 2.9 million samples) is sufficient to retain 98% of WaveNet’s performance com-210

pared to training with one year of data. This suggests the promise of a data-driven GWP211

to be trained and validated on observational datasets of similar resolution and size, as212

well as to generalize to simulations that more realistically model the physics of GWs.213

5 Coupling WaveNet with MiMA214

Successful offline emulation of key atmospheric structures does not necessarily en-215

gender good online performance. It has been shown that small offline errors can trigger216

instabilities or accumulate to generate large errors (Brenowitz & Bretherton, 2018). Here,217

we study the online stability and performance of the emulator by replacing AD99 with218

WaveNet in MiMA. We couple the ANN, written in Python, with MiMA, written in For-219

tran, by using an interoperability package, forpy. Different approaches can be taken to220

couple ML algorithms with Fortran (Chantry et al., 2020; Ott et al., 2020). The main221

advantage of forpy is that it supports complex network structures and requires nominal222

effort to recouple with alternate ML schemes. The primary disadvantage of this inter-223

face is that it is slow compared with alternate approaches. When coupled, WaveNet slows224

the entire GCM by roughly 7.5x, a result of the forpy interface and WaveNet’s size. The225

runtime may be further optimized by switching to an alternate coupling interface, per-226

forming quantization and pruning, reducing the number of trainable weights, and mi-227

grating to a GPU compatible GCM. Optimizing and analyzing WaveNet’s run-time is228

a subject of on-going study and beyond the scope of this work. For all subsequent on-229

line analysis, we use the versions of WaveNet trained with one year of data that accept230

as input (u,T; zonal ANN) and (v,T; meridional ANN).231
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Figure 3. Pressure-Time profiles of the zonal mean zonal wind, averaged from between 5◦ S

and 5◦ N and smoothed with a 15-day low pass filter show the behavior of the QBO in 30 year

integrations of (a) the control version of MiMA with the AD99 parameterization, (b) the model

coupled with WaveNet, (c) a 4xCO2 integration with the AD99 parameterization, and (d) a

4xCO2 integration coupled with WaveNet. Vertical dashed lines separate 5 year segments. The

eastward (red) and westward (blue) bands correspond to winds associated with breaking GWs in

opposite phases of the QBO. The QBO period and amplitudes are calculated using the transition

time (TT) method. The dashed-horizontal line in each panel delineates the model level (≈10

hPa) where the TT method is used.
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6 Online Performance232

To demonstrate the ability of WaveNet to act as a faithful emulator online, we com-233

plete a 30-year integration of MiMA coupled to WaveNet using two configurations. Fig-234

ure 3 shows pressure-time profiles of 15-day averaged zonal mean zonal winds between235

5◦S and 5◦N for the two configurations for AD99 (a,c) and WaveNet (b,d). Following236

the transition time (TT) method described in Richter, Anstey, et al. (2020), we calcu-237

late the period of each QBO cycle as the difference in time between every other phase238

change for the 5◦S to 5◦N averaged zonal mean zonal wind time series at roughly 10 hPa.239

The westerly (easterly) amplitude is taken as the maximum (minimum) value of the time240

series for each QBO cycle. The numbers in the lower left corner of each panel show these241

statistics calculated for years 1 through 30 with the spin-up time omitted. From the same242

experiments, we plot the average zonal winds and temperature as a function of pressure243

and latitude in Figure 4.244

6.1 Baseline Emulation245

The first experiment utilizes the same model configuration as was used to gener-246

ate training data and serves to evaluate WaveNet’s ability to emulate AD99 while on-247

line. For this scenario, WaveNet produces a QBO with an average period of 30.27 ± 2.82248

months, slightly longer than the 28.18 ± 2.51 month period generated by AD99. This249

difference can easily be observed in Figure S3 which shows that the error magnitude os-250

cillates with out-of-phase samples. WaveNet produces remarkable consistency in the over-251

all height and fine-scale features of the QBO. The asymmetry between easterly and west-252

erly amplitudes, which is well appreciated in models and observations (DallaSanta et al.,253

2021), is fully captured by WaveNet. The amplitude fidelity is limited by the training254

period. The simulated westerlies are too strong compared to those generated by AD99,255

as the ANN was trained over an easterly dominated year; however the difference between256

easterly amplitudes is not statistically significant. This suggests that training an ANN257

on limited observations (less than one QBO cycle) may provide spectral insight even if258

the entire amplitude cycle is not well-sampled. WaveNet produces a climatology simi-259

lar to AD99 (Figure 4). WaveNet generates a stronger polar vortex (Figure S4) and cooler260

temperatures (Figure 4j) in the upper atmosphere in both poles. The general agreement261

between WaveNet and AD99 observed in these results is a strong indicator that WaveNet262

can act as a faithful emulator of AD99.263

6.2 Forcing Emulation264

To be useful, a data-driven GWP must accurately emulate GWD across a range265

of model configurations and scenarios not fully captured in training data. The second266

experiment presented here serves as a first step towards understanding WaveNet’s sen-267

sitivity to model configuration. Here, we completed a coupled run using four times pre-268
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industrial concentrations of CO2 (1200ppm) or roughly triple that of the baseline run269

(390ppm), which was optimized for early 21st century scenarios. Figures 3c and 3d show270

that when using either AD99 or WaveNet the average period and amplitude of the QBO271

decrease and the variance increases. The amplitude decrease is common among state-272

of-the-art models (Richter, Butchart, et al., 2020) and is attributed to increased trop-273

ical upwelling, which is separate from GWD. However, we observe that the QBO gen-274

erated by WaveNet has a larger response to forcing and enhanced variance.275

Models differ regarding the period projection; and a mechanism is not yet clear,276

as the intermodel correlation between period decrease and increased gravity wave flux277

vanishes when only fixed-source GWPs are considered (Richter, Butchart, et al., 2020).278

Thus, it is significant that AD99 and WaveNet project similar changes to QBO period,279

highlighting the role of changes in the background state. Our idealized model results point280

to further investigation with more complex models, e.g. within the GFDL Flexible Mod-281

eling System. Figure 4 and Figure S4 show that WaveNet and AD99 have a very sim-282

ilar climatological response to external forcing (e.g. both produce stronger polar jets and283

similar tropical changes). Although the regions that are statistically distinguishable vary,284

likely due to changes in regional variability, the fraction of total distinguishable points285

remains roughly the same for the 4xCO2 (36% u, 31% temp) and baseline scenarios (39%286

u, 28% temp).287

7 Discussion and Conclusion288

We have demonstrated that an ANN can skillfully learn the salient features of GW289

momentum transport directly from resolved flow variables. We have produced an em-290

ulator that can stably run when coupled with a simplified global atmospheric model for291

multidecadal time-periods and reproduce the large-scale circulation. We have shown that292

the most important input features for WaveNet’s predictions are the horizontal wind com-293

ponents local to the vertical level of prediction, and we have demonstrated that WaveNet294

can generalize using limited training data, online and offline. Finally, WaveNet produces295

a climatological response to CO2 forcing similar to that generated by AD99. The suc-296

cess of these experiments implies that an approach like WaveNet may open a new av-297

enue by which the advantages of high-resolution GW simulations (Remmler et al., 2015)298

or observational datasets (Lindgren et al., 2020) can be incorporated into current GCMs.299

There are, however, a number of challenges that may emerge before the advantages300

of an approach like WaveNet can be fully realized in a GCM. First, ANNs do not inher-301

ently conserve energy or momentum. Second, the lack of interpretability of ANNs may302

serve as a substantial barrier to their widespread adoption. Additional effort is neces-303

sary to consider how WaveNet’s behavior may relate to the GW dispersion relations. Third,304

WaveNet in its current setup is too slow. In order to make coupling WaveNet with a GCM305

computationally feasible, a cost-performance analysis is planned to reduce WaveNet’s306
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Figure 4. Pressure-Latitude profiles of average temperature (a,b) and zonal winds (g,h) in the

baseline (a,g) and 4xCO2 (b,h) simulations for AD99. Panels d, e, j, and k present the climato-

logical difference between AD99 and WaveNet for average temperature and zonal winds for the

baseline and 4xCO2 simulations. Regions that are statistically distinguishable (p<0.05) via the

Student’s t-test are dotted. The climate change signal for average temperature and zonal winds

for WaveNet and AD99 are presented in the rightmost column.
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complexity, optimize coupling, and utilize GPU hardware. A next test is to examine how307

WaveNet generalizes when run using various model configurations and trained on regional308

datasets and orographic and nonorographic GWPs.309

Nevertheless, our results suggest that machine learning may represent a powerful310

alternative to existing GWPs. The approach presented here constitutes a first step to-311

ward obtaining such GWPs for global climate prediction.312
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